Abstract

This document specifies the semantics and behavior of the Hare programming language and serves
to inform the development of compilers and programs for its use.

The scope of this document covers the language itself (its grammar and semantics), as well as
standard library types & functions which are necessary for all Hare environments to provide. The
document does not specify any additional details of the environment or the programming libraries
available in that environment.

This specification is a DRAFT, and is not considered authoritative. Revisions to this draft are
developed under the direction of the Hare project on SourceHut at htfps://sr.ht/ ~sircmpwn/ hareé,
and the final specification shall be published there as well. You may also contact the editor via
email to Drew DeVault <sir@cmpwn.com>.

https://sr.ht/~sircmpwn/hare

Contents

I Infroduction 2
DYVTIZRT e e e 2

2 __Scope 3
B lerms and dennitions 4
d__Conformancd 5
F__Program environmen{ 6
B7 Tranclafion environmenfl L0000 v 6
B3 Translafion STEPY« . . o o e e e e e 6
B4 FExecnfionenvironment Lo L L Lo s e e e 7
b.4. 4 The freestanding environmenf v . . oCe e e e . 7

R435 Thehasfedenvironment«o 7

D.4.6 Program execution e e e e e e e e e e e 7

B3 Diagnosticd e e e e e e e e e e 8

i ouag 9
BT _NOM@IOO e e o e e e e e e e e e e e 9
b2 _TexicalanalySid o . o v v o e e e e e e e e 9

5 K A9 . . 10
B2 Idenfifierd e e 11

b DEY . . e e e e e 12
b.5.9 Infegertyped e e e 13

b.5.10 Floating pomnttyped. e 14

POTT RUNCTIVPEY - -« v v v o e e e e e e e e e e e e e e 14

p5TZ Flexible constant typeg - . « - « v v v v v v v e e e e e e 14

BPOT3 PoOInter TYPEY . « « « v v e e e e e e e e e e e e e e 15

b.5. T4 Other primifiveE types v v v o e e e e e e e e e 15

B.5.T5 Struct and union typey v v v v e e e e e e e e e 16

BST6 _Tupletyped . . - - v o o e e e e 18

Bb.5.T7 Tagged union typed v v v v e e e e e e e e e 18

b.5.I8 Sliceand array typed e e 19
POT9 STWINZIVPEY - - « -+« v o e e e e e e e e e e e e e e e 20
P20 FunClion tVPEY . - « « v v v v e e e e e e e e e e e e e 21
BSZT Typealiaseqd o o v i e e e e 22
EXPressiony o o e e e s 23
66 Constanfd Ll Ll L e e e e e e e e e e 23
b.6.7 Floating constantd e 24
p:6.T0 Infegerconstantd v v vttt e e 25
b6 I3 Kuneconstanfs Lo L oL 0L oL e e e e e e 26
b.6.16 String constanty e 27
b.6.T7 Array iferald e e 27
bo s Structhiferald L 0L 0L 0L L L e e e 28
BP:6.T9 PIain €XPIeSSIONY . . « v v v v v v v e e e e e e e e e e e e e 29
66720 Allocationd Lo L oo e e e e e e e e e 30
BOZ21 ASSErfIONS Lol e L e e e e e e e e e e e e e e e e e 31
BOT CAlld e e e e e e e e e e e 31
B673 Measurementd o. .. L h d e e e e e e e e e e e e 33
B674 Feldaccesd L0 e e e e 33
B:625 TndeXing« v . o e e e e s e e e e e e e 34
5.6.26 O e s, 35
B.6.27 Appending e 36
b.6.28 Inserfing 37
p.6.29 Deleting e 38
p.630 Error propagafion e e e e e e e e e e e e 38
B:6:3T POSTIX @XPIESSIONGT . « « « « v v v v e e e e e e e e e e e e e 39
BP.632 VariadiC eXpressionyg e e e e e e e e e e e e e 39
b.6.33 Bulltin €Xpressiony v e e e e e e e e e e e 40
b.6.34 Unary arithmetid o o e e e e e e e e e 40
p.6.35 Castsand typeassertiongo 41
p.636_ Multiplicative arithmetid v v v v v et e 43
b6 3/ Addifive anithmefid L ..o L0 Lo e e e e e e 43
b.6.38 Bit shifting arithmetid 44
b639 Bifwise anfhmefid oL 0oL 45

b.6.40 Logical compariSOny v v v v v e e e e e e e e 45

b.6.41 Logicalarithmetid i 46
P:6: 47 TEEXPIESSIONG . « &« ¢ v v o v et e e e e e e e e e e e e e e 47
B:6. 43 FOTTOOPY « - « « v v o e e e e e e e e e e e 47
BP.6.44 SWITCh eXPIessiony v v v vt e e e e e e e e e e e 48
b.6.45 Match expressiony o i i e e e e e 49
B.6.46 ASSIENMENT e e e e e e e e e e e e e 50
p.6.47 Variablebinding L L 52
B:6.48 Deferred eXpressionyov e v e e e e e e 53
p.:6:49 Compound eXpressiong - . . . « . v v v v v b e e e e e e e . 54
0.6.00 Control exXpressiony e e e e e e e e e e e e 54
b.6.5T High-Tevel expression clasy < . . . v o v i v i e e e i 55
Bb.7 Type promotiono e e e e e e e e e 55
B8~ Translafion compatible expression subsef 56
B9 Result type reduction algorithig v v v v v v e e e e e e e e e 57
p. 10 FTIexible constant promofion algorithm . . o v v v v v v v e e e 58
b1l Declarationd oL 0L 0L oL e e s s e e e e e e 59
b1l 3 Globaldeclarationd 0. o0 0000000 oL 59
b1l 4 Constantdeclarafions o . 0 vttt e e e e e e e 60
pIT.5 Typedeclarationy o o v v e e e e 61
b1l 6 Finctiondeclarafions oL 0L 0L oL e e 62
BT e e e e e 63

1.1

1.2
1.3

1.4

1 Introduction

The purpose of this document is to promote the portability of Hare programming systems and to
serve as a reference for implementors and users of Hare programming environments.

Numbered text in this document is authoritative unless otherwise noted.
Sentences displayed in italics are non-authoritative (they are informative).
This is an example of informative text.

The abstract and appendices are informative.

1.1 Copyright

©Drew DeVault, Eyal Sawady, et al, 2020-2022

This document is licensed under the terms of CC-BY-ND. Free redistribution of this document is
permitted, but derivative works are not allowed. Software which implements this specification are
not considered derivative works; you may freely apply this specification as such without restriction.

2.1

2.2

2 Scope

This document establishes the form and semantics of the Hare programming language. It specifies:
2.1.1 The representation of Hare programs.

2.1.2 The syntax and constraints of the Hare language.

2.1.3 The semantic rules for the correct interpretation of a Hare program.

This standard does not specify:

2.2.1 The means by which program source code is processed by an interpreter or compiler.

However, «Appendix ??: Hare compiler conventions» provides an informative reference of
common conventions for compiler and interpreter programs.

2.2.2 The means by which the environment interprets Hare programs.

2.2.3 The minimum requirements or maximum capabilities of a system capable of interpreting
Hare programs.

3.1

3.2

33
34

3.5

3.6

3.7

3.8

39
3.10

3 Terms and definitions

abort: a process in which the «64: Execution environment» immediately proceeds to the program
teardown step «84.3: Execution environment».

alignment: a specific multiple of an octet-aligned storage address at which some data is required to
be stored. The size of an object must be a multiple of its alignment.

Example An object with an alignment of 8 may be stored at addresses 8, 16, 32, and so on; but not
at address 4.

character: a single Unicode code-point encoded in the UTF-8 format.

expression: a description of a computation which may be executed to obtain a result with a specific
result type.

expression class: a grouping of expressions with similar properties or for grammatical disam-
biguation.

implementation-defined: a detail which is not specified by this document, but which the imple-
mentation is required to define.

operand: an input into an operator, together they form an operation. An operand is an expression,
and the input to the operator shall be its result.

padding: unused octets added to the storage of some data in order to meet a required alignment.
The value of these octets is undefined.

size: the number of octets required to represent some data, including padding.

undefined: a detail for which no definition is provided, neither by this specification nor by the
implementation. Programs which rely on these details are non-conforming.

4.1

4.2

4.3

4.4

4 Conformance

"Shall" is interpreted as a requirement imposed on the implementation or program; and "shall not"
is interpreted as a prohibition.

"May" is used to clarify that a particular interpretation of a requirement of this specification is
considered within the acceptable bounds for conformance. Conversely, "may not" is used to denote
an interpretation which is not considered conformant.

A strictly conforming implementation shall meet the following requirements:

4.3.1 It shall implement all of the behavior defined in the authoritative text of this
specification.

4.3.2 It shall not implement any behavior which is included by «2.1: Scope» but is not defined
by this specification.

This is to say that vendor extensions are prohibited of conformant implementations.

4.3.3 It may implement behavior which is excluded by «0.2: Scope» and which is not defined by
this specification.

A conforming freestanding implementation shall implement all requirements of this specification
except for those defined in «??: Runtime Library». A conforming hosted implementation shall
implement all requirements of this specification, including those defined in «??: Runtime Library».

Some language features require the implementation to provide the features defined by «??: Runtime
Library». In order to use a conformant freestanding implementation, the program may be required
to provide its own implementation of the features defined by «??: Runtime Library»; or refrain
from using language features which require these implementations.

5.1

5 Program environment

The implementation translates source files and executes programs in two phases, respectively referred
to as the translation phase and the execution phase. The context in which these phases occur is
referred to as the translation environment and the execution environment.

5.2

5.2.1

522

5.23

524

5.3

5.3.1

5.3.2

5.33

534

5.35

Translation environment

A Hare program consists of one or more source files which are provided to the translation
phase. A source file shall be represented as UTF-8 text.

Each source file is a member of exactly one module, and the collective source files for
a module form a translation unit. Each module may define its own private types, data,
procedures, and so on, for the purpose of accomplishing its tasks. It may also export these
types for other modules to use.

A Hare program may be translated incrementally, rather than all at one time. However,
the composite source files of a single translation unit must be compiled together. Once
compiled, an opaque representation of their exported interface (the identifiers and types
of their exported procedures, data, and types) provides sufficient information to translate
other units which require the module. The translated modules may be composed into the
final program at the last step.

If the source files for a translation unit are not changed, the translated module may be used
repeatedly without repeating the translation step.

Translation steps

The list of source files constituting the translation unit are identified. Steps «63.2: Trans-
lation steps» and «B3.3: Translation steps» are repeated for each source file.

Lexical analysis is conducted on the source file, translating it into a stream of tokens.
Forward references: «b2: Lexical analysis»

Syntax analysis is conducted on the token stream, mapping the tokens to an abstract syntax
tree (AST). The Hare grammar shall define the relationships between tokens necessary to
producea valid AST.

Forward references: «??: Grammar»

Logical analysis is conducted on the ASTs. In this step, the implementation verifies the
constraints imposed on the program. The result of this step is a verified program module.

In this step, colloquially referred to as the "check” step, a module composed of several
source files is consolidated into a single verified program module.

Once the verified program module is obtained in the translation phase, the remainder of

5.3.6

5.4

54.1

54.2

543

5.4.4

54.5

5.4.6

the translation phase shall be completed with no further diagnostic messages, except in the
case where external factors from the execution environment prevent successful completion.

Example Memory exhaustion or lack of disk space are situations which may cause a failure
in the remainder of the translation process.

The verified program module is combined with any applicable external modules and trans-
lated into a single program image which is suitable for interpretation by the execution
environment.

Execution environment

Two execution environments are defined: hosted and freestanding. The implementation
must support at least one environment.

During program startup, the execution environment shall initialize all global declarations
to their initial values, call all initialization functions in an unspecified order, then transfer
control to the program entry point. The manner of this initialization is implementation-
defined.

During program teardown, the execution environment shall call all finalization functions in
an unspecified order, then terminate.

Forward references: «??: Initialization functions», «??: Finalization functions»

The freestanding environment

5.4.4.1 The name and signature of the program entry point function is undefined in the

freestanding environment.

The hosted environment

5.4.5.1 In the hosted environment, the program entry point shall be an exported function

named main in the global namespace. It shall have no parameters and a result type
of void.

The signature of a conformant entry point follows:

export fn main() void;

The program shall provide this function in the global namespace.

Program execution

5.4.6.1 The evaluation of an expression may have side-effects in addition to computing a

value. Calling a function or modifying an object is considered a side-effect.

5.4.6.2 Iftheimplementation is able to determine that the evaluation of part of an expression

is not necessary to compute the correct value and cause the same side-effects to

occur in the same order, it may rewrite or re-order the expressions or sub-expressions
to produce the same results more optimally.

The interpretation of this constraint shall be conservative. Implementations should
prefer to be predictable over being fast. Programs which require greater perfor-
mance shall prefer to hand-optimize their source code for this purpose.

Forward references: «b@: Expressions»

5.5 Diagnostics

5.5.1 If the constraints are found to be invalid during the translation phase, the implementation
shall display an error indicating which constraint was invalidated, and indicate that the
translation has failed in whatever manner is semantically appropriate.

On a Unix system, the semantically appropriate indication of failure is to exit with a
non-zero status code.

5.5.2 In the translation environment, if the implementation is able to determine that multiple
constraints are invalid, it may display several diagnostic messages.

5.5.3 Ifthe constraints are found to be invalid during the execution phase, a hosted implementation
shall abort the execution phase, display a diagnostic message, and indicate that the execution
has failed in whatever manner is semantically appropriate.

10

6 Language

6.1 Notation

A summary of the language syntax is given in «Appendix ??: Language syntax summary».

The notation used in this specification indicates non-terminals with ifalic type, terminals
with bold type, and optional symbols use "opt" in subscript. Non-terminals referenced in
the text use the expression notation. The following example denotes an optional expression
enclosed in literal braces:

{ expression,y }

When there are multiple options for a single non-terminal, they will either be printed on
successive lines, or the preceeding authoritative text shall use the key phrase "one of".

Most grammatical constructs are tolerant of white-space characters inserted between their
terminals. However, some are not — these shall use the key phrase "exactly" in their
grammar description.

A non-terminal is defined with its name, a colon (‘:”), and theoptions; indented and shown
with one option per line. For example, switch-cases is defined like so:

switch-cases:
switch-case . opr
switch-case , switch-cases

Additionally, text may appear in the notation without italics or bold font; it appears in the
same style as the authoritative text. Such examples are used to describe how a particular
terminal sequence is matched when enumerating all of the possibilities is not practical.

string-char:
Any character other than \ or ".

6.2 Lexical analysis

6.2.1

6.2.2

token:
keyword
name

A token is the smallest unit of meaning in the Hare grammar. The lexical analysis phase
processes a UTF-8 source file to produce a stream of tokens by matching the terminals with
the input text.

Tokens may be separated by whifte-space characters, which are defined as the Unicode
code-points U+0009 (horizontal tabulation), U+000A (line feed), and U+0020 (space). Any
number of whitespace characters may be inserted between tokens, either to disambiguate

11

6.2.3

6.2.4

from subsequent tokens, or for aesthetic purposes. This whitespace is discarded during the
lexical analysis phase.

Within a single token, white-space is meaningful. For example, the string-literal token is
defined by two quotation marks " enclosing any number of literal characters. The enclosed
characters are considered part of the string-literal token and any whitespace therein is not
discarded.

The lexical analysis process consumes Unicode characters from the source file input until
it is exhausted, performing the following steps in order. At each step, it shall consume and
discard white-space characters until a non-white-space characters is found, then consume
the longest sequence of characters which constitutes a token and emit it to the token stream.

The terminal sequence // is used to mark a comment. When the lexical analyzer encounters
this terminal sequence, it shall discard it and all subsequent characters until a line feed
U+000A is encountered, then resume normal processing.

6.3 Keywords

6.3.1

keyword: one of:
abort alloc append as assert bool break case char const continue
def defer delete else enum export f32 f64 false fn for free il6
i32 i64 i8 if int is len let match null nullable offset return
rune size static str struct switch true type ulé u32 u64 u8 uint
uintptr union use void _

Keywords (or reserved words) are terminals with special meaning. These names are
case-sensitive. Keywords are reserved for elements of the syntax and shall not appear as
user-defined names, in particular in «b-4: Identifiers».

12

6.4 Identifiers

6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

identifier: exactly:
name
name :: identifier

name: exactly:
nondigit
name alnum

nondigit: one of:
abcdefghiijk1m
nopgrstuvwxyz
A BCDEFGHTIJIKTLM
NOPQRSTUVWXY?Z

digit: one of:
01234567 829

alnum:
digit
nondigit

An identifier is a user-defined name which denotes a module, object, function, type alias,
struct or union member, or enumeration member.

An identifieris only meaningful within a specific scope of the program. The scope is defined
by the region of the AST in which the identifier is applicable; it may be the program, a
translation unit, a sub-unit, a function, or an expression-list. The identifier is considered
visible within the region that defines its scope.

A translation unit is assigned a unique namespace within the program. These namespaces
may be nested recursively; that is to say that a translation unit may have a parent which
is another translation unit. One translation unit may be assigned to the root namespace,
which has no name.

Identifiers declared within a translation unit scope are assigned the namespace of the
translation unit. The double-colon terminal :: is used to denote the namespace of an
identifier, ordered from least to most specific.

An identifier is either fully-qualified or unqualified. Unqualified identifiers require the
context of their enclosing scope to be interpreted unambiguously. Fully-qualified identifiers
are used for exported identifiers, and include the namespace in which they reside.

Example The fully-qualified identifier sys: :start::start_ha qualifies the un-qualified
identifier start_ha with the start namespace, which is itself a member of the sys namespace.

An identifier without the namespace qualification may be fully-qualified regardless, if it
exists in the root namespace.

13

6.4.7

The implementation may define the maximum length of an identifier or name.

6.5 Types

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

type:
const,, !op Storage-class

storage-class:
scalar-type
struct-union-type
tuple-type
tagged-union-type
slice-array-type
function-type
alias-type
unwrapped-alias
string-type

scalar-type:
integer-type
floating-type
pointer-type
rune
bool
valist
void

A type defines the storage and semantics of a value. The attributes common to all types are
its size, in octets; alignment; its constant or mutable nature; its error flag, or lack thereof;
and its default value, which may be undefined.

The implementation shall assign a globally unique ID to every type, in a deterministic
manner, such that several subsequent translation environments, perhaps with different
inputs, will obtain the same unique ID; and such that distinct types shall have distinct IDs.

This specification details under what circumstances two types are equivalent to one another,
and thus shall have the same ID. For all types, any two types are distinct if their type class,
their constant or mutable nature, and their error flag or lack thereof, are distinct. Each
type class may impose additional distinguishing characteristics on their types, which are
specified in their respective sections.

Some types have an undefined size. This includes function-type, and some cases of

slice-array-type.

Some types have an undefined default value. If the default value of such a type would be
used, the implementation shall instead print a diagnostic message and abort the translation
phase.

The const terminal, when used in a type specifier, enables the constant flag and prohibits

14

write operations on any value of that type. Types without this attribute are considered
mutable by default.

6.5.6 The ! terminal, when used in a type specifier, sets the error flag for this type.

6.5.7 A scalar type, also called a built-in or primitive type, stores one value at a specific, pre-
defined precision. Scalar types are the most basic unit in the Hare type system. Other types
are referred to as aggregate types, with the exception of alias types, which may be either
scalar or aggregate.

6.5.8 The rype class of a type is defined for scalar types as the terminal which represents it, for
example 132.

6.5.9 Integer types

6.5.9.1

6.5.9.2
6.5.9.3
6.5.9.4

6.5.9.5

6.5.9.6

6.5.9.7

6.5.9.8

6.5.9.9

6.5.9.10
6.5.9.11

integer-type: one of:
i8 il6 i32 i64 u8 ulé u32 u64 int uint size uintptr char

Integer types represent an integer value at a specific precision. These values are
either signed or unsigned; which respectively are and are not able to represent
negative integers. Zero is not negative. Integer types are considered numeric types.

Signed integer types shall be represented in two’s complement form.

The endianness (byte order) of integer types shall be implementation-defined.

suffix, which represents their precision in bits. Of those, types prefixed with u are
unsigned, and those prefixed with i are signed.

The precision of int and uint are implementation-defined. int shall be signed, and
uint shall be unsigned. Both types shall be at least 32-bits in precision. The
precision in bits shall be a power of two.

The precision of size is implementation-defined. It shall be unsigned and shall be
able to represent the maximum length of an array type. The precision in bits shall
be a power of two.

The precision of uintptr is implementation-defined. It shall be able to represent the
value of any pointer-type as an integer. It shall be unsigned.

The char type is equivalent to the u8 type. However, there are limitations on its
use, see «??: Arithmetic expressions» & «??: Access expressions».

The implementation is not required to provide the char type. If the implementation
does not support the char type, it must print a diagnostic message and abort the
translation phase for programs which attempt to utilize it.

The alignment of integer types shall be equal to their size in octets.
The default value of an integer type shall be zero.

The following table is informative.

15

Type | Size in bits Minimum value Maximum value
i8 |8 -128 127
il6 | 16 -32708 32707
i32 | 32 -2147483648 2147483647
i64 | 64 -9223372036854775808 9223372036854775807
u8 | 8 0 255
ul6 | 16 0 65535
u32 | 32 0 4294967295
ubd | 64 0 18446744073709551615
int | > 32 < —2147483648 > 2147483647
uint | > 32 0 > 4294967295
size | * * *
uintptr | * + +

+ implementation-defined

+ undefined

6.5.10 Floating point types

6.5.10.1

6.5.10.2

6.5.10.3
6.5.10.4

floating-type:

f32
f64

Floating-point types shall represent real numbers, i.e. numbers with both an integer
and fractional part. Floating point types are considered numeric types.

The implementation shall represent floating-point types as IEEE 754-compatible
floating-point numbers. f32 shall be stored in the binary32 format, and 64 shall
use the binary64 format.

The alignment of float types shall be equal to their size in octets.

The default value of a float type shall be zero.

6.5.11 Rune types

6.5.11.1

The rune type represents a Unicode codepoint, encoded as a u32.

6.5.12 Flexible constant types

6.5.12.1

6.5.12.2

Flexible constant types represent floating, integer, or rune constants whose result
type has not been determined. The size and alignment of flexible constant types
shall be undefined. iconst and fconst are considered numeric types.

An iconst shall have maximum and minimum values associated with it, which
shall be represented as signed integers with sufficient precision to store an i64.
The minimum value shall represent the smallest integer constant which has this
result type, and the maximum value shall represent the largest. The minimum shall

16

6.5.12.3

6.5.12.4

6.5.12.5

6.5.12.6
6.5.12.7

always be less than or equal to the maximum, and the type shall be considered
unsigned if and only if the minimum is greater than or equal to 0.

The default type for fconst shall be f64. The default type for iconst shall be int
if the maximum and minimum are within int’s range, and i64 otherwise. The
default type for rconst shall be rune.

A flexible constant type may be lowered to a different type by the «bI0: Flexible
constant promotion algorithm», causing all instances of that type within the trans-
lation environment to be replaced by the new type. If a flexible constant type hasn’t
been lowered by the end of the translation phase, it shall be lowered to its default
type.

There is no grammar for defining flexible constant types. They are for internal use
only, as the result type of integer-constant, floating-constant, and rune-constant.

Each constant with a flexible result shall have a distinct type.

If a flexible constant type is embedded within another type, it shall first be lowered
to its default type.

This is intended to ease implementation, in order to prevent a type’s ID, size, and
alignment from changing partway through the translation phase.

6.5.13 Pointer types

6.5.13.1

6.5.13.2

6.5.13.3

6.5.13.4

6.5.13.5

pointer-type:

*x fype
nullable x* rype

A pointer type is an indirect reference to an object of a secondary type. The notation
of a pointer type is a * prefix before the secondary type.

A normal pointer type shall always refers to a valid secondary object. A pointer
type prefixed with nullable is considered a nullable pointer type, and shall refer
to either a valid secondary object or to a special value called null.

The representation of a pointer type shall be implementation-defined, but it shall
have an implementation-defined length and alignment.

The default value of a nullable pointer type is null. The default value of a non-
nullable pointer type is undefined.

A pointer type shall be equivalent to another pointer type only if they share the
same secondary type and nullable status.

6.5.14 Other primitive types

6.5.14.1

6.5.14.2

The bool type

The bool type represents a boolean value, which may have one of two states: true
or false.

The boolean type representation shall be equivalent to the uint type. Any non-zero

17

6.5.14.3

6.5.14.4

6.5.14.5

6.5.14.6

6.5.14.7

6.5.14.8

6.5.14.9

value shall be interpreted as true, and zero shall be intepreted as false.
The default value of a boolean type is false.
The null type

The null type shall have the same representation as a pointer and can only store a
specific, implementation-defined value (the null value).

There is no grammar for defining a value of type null, or a sub-type of null. It is
for internal use only, as the type of the null constant.

The valist type

The valist type is provided for compatibility with the C programming language
as specified by ISO/IEC 9899:2011. Implementation support is optional: imple-
mentations which do not provide C ABI compatibility must parse this type, print a
diagnostic message, and abort.

The size and alignment of the valist shall be an implementation-defined value
which shall be at least eight, and shall be divisible by eight.

Copying avalist value viaan «b-646: Assignment» expression shall be equivalent
to the "va_copy" macro described by ISO/IEC 9899:2011 section 7.16.1.2.

The void type

The void type represents a non-existent value, and shall have no storage.

6.5.15 Struct and union types

6.5.15.1

struct-union-type:
struct { struct-union-fields }
union { struct-union-fields }%}

struct-union-fields:
struct-union-field , ;s
struct-union-field , struct-union-fields

struct-union-field:
offset-specifier,p; name : type
offset-specifier oy, struct-union-type
offset-specifier,p; identifier

offset-specifier:
@offset (expression)

The struct type and union type are aggregate types, which collect multiple types,
name them, and assign them offsets within their storage area. A struct type stores
each value at a different offset; a union type stores all of its values at the the same
offset. A type defined with the struct terminal is a struct type and uses the struct
type class; if the union terminal is used the type is a union type with the union
type class.

18

6.5.15.2

6.5.15.3

6.5.15.4
6.5.15.5

6.5.15.6

6.5.15.7
6.5.15.8

6.5.15.9

6.5.15.10

6.5.15.11

6.5.15.12

The struct-union-fields list denotes, in order, the subvalues which are collected by
a struct or union, and potentially assigns a name to each.

For a struct type, the offset of each field is equal to the minimum aligned offset
which would meet the alignment requirements of the field’s type and which is
greater than the offset of the previous field plus the size of the previous field. The
implementation shall add padding to meet the alignment requirements of struct
fields. For a union type, the offset of all members is zero.

The type of each struct or union field shall have a definite, nonzero size.

If given, the offset-specifier shall override the computed offset for a given field. If
the user-defined offset for a field would not meet the alignment requirements for
that type, the behavior is implementation-defined. The implementation shall either
raise a diagnostic message and terminate the translation phase, or shall support
unaligned memory accesses (perhaps at a cost to performance).

The expression given for the offset-specifier shall be limited to the «bR: Translation
compatible expression subset», and shall have an integer type and a positive or zero
value.

The offset-specifier shall not be given for a union type.

A union type’s size is the maximum size among its fields. A struct type’s size is
the maximum value of S for S'= O + Z among its fields, where O is that field’s
offset and Z is that field’s size.

The default value of a struct or union type shall be defined as a value whose fields
assume the default values of their respective types. If two or more fields have
overlapping storage (as defined by the bounds of their offsets and size), and any of
their types does not have a default value, the default value of all of these fields shall
be undefined.

If the struct-union-type form of struct-union-field is given, the parent type shall
collect the fields of the child type as its own. The offset of each field within the
child type shall be the sum of the offset within the child type and the offset the child
type occupies within the parent struct. The identifier form shall be interpreted in
the same manner as a struct-union-type if it refers to a type alias of a struct or union
type, otherwise a‘diagnostic message shall be printed and the translation phase
shall abort.

Forward references: «b321: Type aliases»

A struct or union type shall be equivalent to another struct or union type if their
fields are of equivalent name, type, and offset, without respect to the order of their
appearance in the program source.

The following types are equivalent:
struct { a: int, b: int }
struct { a: int, struct { b: int } }

Each field name (including names of embedded fields) shall be unique within the
set of all field names of the struct-union-type.

19

6.5.16 Tuple types

6.5.16.1

6.5.16.2

6.5.16.3

6.5.16.4
6.5.16.5

6.5.16.6

tuple-type:
(tuple-types)

tuple-types:
ype , 1ype ,opt
type , tuple-types

A tuple type stores two or more values of arbitrary types in a specific order. It
is similar to a struct type, but without names for each of its subvalues. Each
value is stored at a given offset, possibly with padding added to meet alignment
requirements.

The offset of each value is equal to the minimum aligned offset which would meet
the alignment requirements of the value’s type and which is greater than the offset
of the previous value plus the size of the previous value type. The implementation
shall add padding to meet the alignment requirements of tuple values.

The size of a tuple is the sum of the sizes of its value types plus any necessary
padding. The alignment is the maximum alignment among its value types.

The type of each tuple value shall have a definite, nonzero size.

The default value of a tuple type shall be defined such that its values assume the
default values of their respective types. If any of the subtypes do not have a default
value, neither does the tuple type.

Two tuple types shall be equivalent to each other if they have the same value types
in the same order.

6.5.17 Tagged union types

6.5.17.1

6.5.17.2

6.5.17.3

tagged-union-type:
(tagged-types)

tagged-types:
type | type |opt
type | tagged-types

A tagged union stores a value of one of its constituent types, as well as a fag
which indicates which of the constituent types is selected. The constituent types
are defined by tagged-types.

The representation of a tagged union shall be a uint, in which the tag value is
stored, followed by sufficient space to store any of the possible constituent types.
Padding shall be inserted between the tag and the value area and after the value area
if necessary to meet the maximum alignment among the tagged union members
and the uint field.

The tag value shall be the type ID of the type which is selected from the constituent

20

6.5.17.4

6.5.17.5

6.5.17.6

6.5.17.7
6.5.17.8

types. This value shall be stored at the uint field and shall indicate which type is
stored in the value area.

The alignment of a tagged union type shall be the alignment of the uint type or
the maximum alignment of the constituent types, whichever is greater.

The size of a tagged union type shall be the maximum size of its constituent types,
plus the size of the uint type, plus any padding added per «b3172.2: Tagged union
types».

If a member type among tagged-types is a tagged union type, it shall be reduced
such that nested tagged union type is replaced with its constituent types in the
parent union.

The types (A | (B | (C | D)))and (A | B | C | D) areequivalent.
The default value of a tagged union type is undefined.

A tagged union type shall be equivalent to another tagged union type if they share
the same set of secondary types, without regard to order, and considering the
secondary types of nested tagged unions as members of the set of their parent’s
secondary types.

It follows that the types (A | B) and (B | A) are equivalent.

6.5.18 Slice and array types

6.5.18.1

6.5.18.2

6.5.18.3

6.5.18.4

6.5.18.5

6.5.18.6

slice-array-type:
[1 type
[expression 1 type
L+ 1 nype
[— 1 nype

An array type stores one or more items of a uniform secondary type. The number
of items stored in an array type is an attribute of the array type and is specified
during the translation phase. The secondary type shall have a definite, nonzero
size.

The expression representation is used for array types of a determinate length, that is,
with a determinate number of items. Such arrays are bounded. The expression must
evaluate to a positive integer value, and shall be limited to the «bR: Translation
compatible expression subset».

An array type may be unbounded, in which case the number of items is not known.
The * representation indicates an array of this type.

An array may be bounded, but infer its size from context, using the _ representation.
Such an array is said to be context-defined.

An array type may be expandable. This state is not represented in the type
grammar, and is only used in specific situations. Array types are presumed to be
non-expandable unless otherwise specified.

The representation of an array type shall be the items concatenated one after

21

6.5.18.7

6.5.18.8

another, such that the offset of the Nth item is determined by the equation NV x S,
where S is the size of the secondary type.

A slice type stores a pointer to an unbounded array type, with a given capacity, and
length, which respectively refer to the number of items that the unbounded array
may store without re-allocation, and the number of items which are currently
valid. The representation with no lexical elements between [and] indicates a
slice type.

The representation of a slice type shall be equivalent to the following struct type:

struct {

6.5.18.9

6.5.18.10

6.5.18.11

6.5.18.12

6.5.18.13

data: nullable *[x]type,
length: size,
capacity: size,

The type of the data field shall be a nullable pointer to an unbounded array of the
secondary type.

The alignment of an array type shall be equivalent to the alignment of the underlying
type. The alignment of a slice type shall be equivalent to the alignment of the size
type or «b3T3: Pointer types», whichever is greater.

The size of a bounded array type shall be equal to N x S, where N is the number
of items and S is the size of the underlying type. The size of an unbounded array
is undefined. The size of a slice type shall be equal to the size of the struct type
defined by «b3T18.6: Slice and array types».

The default value of an array type shall be equal to all of its members set to the
default value of the underlying type. If the default value of the underlying type is
undefined, the default value of the array type is undefined.

The default value of a slice type shall have the capacity and length fields set to zero
and the data field set to null.

An array type shall be equivalent to another array type only if its length and
secondary types are equivalent. A slice type shall only be equivalent to a slice type
with the same secondary type.

6.5.19 String types

6.5.19.1

6.5.19.2

string-type:
str

A string stores a reference to a sequence of Unicode codepoints, encoded as UTF-8,
along with its length and capacity. The length and capacity are measured in octets,
rather than codepoints.

The representation of the string type shall be equivalent to the following struct
type:

22

struct {

data: *[*]const u8,
length: size,
capacity: size,

6.5.20 Function types

6.5.20:1

6.5.20.2

6.5.20.3

6.5.20.4

function-type:
Satype-attrop; fn prototype

prototype:
(parameter-list,,,) type

[fntype-attr:
@noreturn

parameter-list:
parameters , op

parameters ... ,opt

parameters , ... ,op
parameters:

parameter

parameters , parameter

parameter:
name : type

— : tbype

Function types represent a procedure which may be completed in the «54: Execu-
tion environment» to obtain a result and possibly cause side effects (see «B46.1:
Program execution»).

If the @noreturn form of fntype-attr is specified in the function-parameters, the
type shall be void and the specified function shall not return to its caller.

The attributes of a function type are its result type and input parameters. A function
type must have one result type (which may be void), and zero or more parameters.
Each name shall be unique.

If the second form of parameters is used, the final parameter of the function type
uses Hare-style variadism. 1f the third form is used, the function uses C-style
variadism. The variadism of a function type affects the calling semantics for that
function.

// Hare-style variadism:

fn(x:

int, y: int, z: int...)

23

// C-style variadism:

fn(x:

6.5.20.5

6.5.20.6

6.5.20.7

6.5.20.8

int, y: int, ...)

Forward references: «b-622: Calls»

The implementation is not required to support C-style variadism. If the implemen-
tation does not support C-style variadism, it must print a diagnostic message and
abort the translation environment for programs which attempt to utilize it.

The type of a parameter which uses Hare-style variadism shall be a slice of the
specified type.

Therefore, in the case of Tn(x: int...), the type of x shall be const []int.

The size, alignment, default value, and storage semantics of function types is
undefined. All function types shall be const, without regard to the use of const
in the type description.

The function’s result type, list of parameter types (in order), its variadism, and
@noreturn status, are distinct characteristics of the function type, for the purpose
of determining equivalency.

6.5.21 Type aliases

6.5.21.1

6.5.21.2

6.5.21.3

6.5.21.4

alias-type:
identifier

unwrapped-alias:
identifier

A type alias assigns an identifier a unique type which is an alias for another type
or a name for a set of enum values.

The grammar for an alias-type does not specify the underlying type. The underlying
type is specified at the time it is declared, see «6_Lll: Declarations».

A type alias shall have the same storage, alignment, size, default value, and seman-
tics as its underlying type. Aliases that represent enum types don’t have a default
value.

Each type alias (uniquely identified by its identifier) shall be a unique type, even if
it shares its underlying type with another type alias.

The ... operator shall unwrap the type alias, and shall cause the statement to refer
to the underlying type rather than the type alias itself.

This notably affects the relationship between type aliases and tagged unions. In
the following example, union_a and union_b have different storage semantics, the
former being a tagged union of two other tagged unions, and the latter being
reduced to a single tagged union.

type signed = (i8 | 116 | 132 | i64 | int);
type unsigned = (u8 | ul6e | u32 | u64 | uint);

24

type union_a = (signed | unsigned);
type union_b = (...signed | ...unsigned);

6.6 Expressions

6.6.1

6.6.2

6.6.3
6.6.4

6.6.5

6.6.6

An expression is a procedure which the implementation may perform to obtain a result, and
possibly cause side-effects (see «<B4f.1: Program execution»).

Expression types are organized into a number of classes and subclasses of expressions
which define the contexts in which each expression type is applicable.

All expressions have a defined result type. It may be void.

Some expressions terminate. The semantics of terminating expressions vary between
different expression types, and will be detailed as appropriate. If unspecified, expressions
described by this expression are presumed to be non-terminating. Expression classes inherit
their termination qualities from the more specific sub-expressions which they classify.

Some expressions may provide a type hint to other expressions which appear in their
grammar, which those expressions may take advantage of to refine their behavior.

Constants

constant:

integer-constant
floating-constant
rune-constant
string-constant
true

false

null

void

6.6.6.1 Constants (also known as literals) shall describe a specific value of an unambiguous

type. The result of the expression is the constant value.

6.6.6.2 The keywords true and false respectively represent the constants of the bool

type.

6.6.6.3 The representation of true as an uint-equivalent (ref «b3T4.2: Other primitive

types») shall be one.

6.6.6.4 The null keyword represents the null value of the null type.
6.6.6.5 The void keyword represents the void value of the void type.

25

6.6.7 Floating constants

6.6.8

6.6.9

floating-constant: exactly:
decimal-digits . decimal-digits exponent,y; floating-suffix,p
decimal-digits exponent,y, floating-suffix

floating-suffix: one of:
32 f64
decimal-digits: exactly:

decimal-digit decimal-digits

decimal-digit: one of:
01234567 829

exponent: exactly:
exponent-char sign,,; decimal-digits

sign: one of:
+ -

exponent-char: one of:
e E

Floating constants represent an IEEE 754-compatible floating-point number in
either the binary32 or binary64 format.

If the floating-suffix is not provided, the result shall be fconst. Otherwise, the type shall
refer to the type named by the suffix.

If the exponent is provided, the value of the constant shall be multiplied by 10 to the power
of decimal-digits. If sign is provided within the exponent, decimal-digits shall assume the
given sign.

26

6.6.10 Integer constants

6.6.11

6.6.12

6.6.13

6.6.14

integer-constant: exactly:
Ox hex-digits integer-suffixop;
0o octal-digits integer-suffixop;
Ob binary-digits integer-suffix,p
decimal-digits exponent,,; integer-suffix,p:

hex-digits: exactly:
hex-digit hex-digits

hex-digit: one of:
012345467 89 ABCDETFabocdeH f

octal-digits: exactly:
octal-digit octal-digits .

octal-digit: one of:
0123 45867

binary-digits: exactly:
binary-digit binary-digits .

binary-digit: one of:
01
integer-suffix: one of:

i u z i8 116 i32 i64 u8 ul6é u32 u64

Integer constants represent an integer value at a specific precision.

If the integer-suffix is provided, the type is specified by the suffix. Suffixes i, u, and z
shall respectively refer to the int, uint, and size types; the remainder shall refer to the
type named by the suffix. Otherwise, the type shall be iconst with both maximum and
minimum set to the number provided.

If the number provided is not within the limits of the precision of the constant type, a
diagnostic message shall be printed and the translation phase shall fail.

The prefixes 0x, 0o, and 0b shall respectively cause the number to be interpreted with a
hexadecimal, octal, or binary base. If no prefix is used, the number shall be interpreted
with a decimal base.

If the exponent is provided, the value of the integer shall be multiplied by 10 to the power of

decimal-digits. If sign is provided and is negative (-), a diagnostic message shall be printed

and the translation phase shall abort.

27

6.6.15 Rune constants

6.6.15.1
6.6.15.2

6.6.15.3

6.6.15.4

rune-constant:
' rune ‘'

rune:
Any character other than \ or '
escape-sequence

escape-sequence: exactly:
named-escape
\x hex-digit hex-digit
\u fourbyte
\U eightbyte

fourbyte: exactly:
hex-digit hex-digit hex-digit hex-digit

eightbyte: exactly:
fourbyte fourbyte

named-escape: one of?:
\0 \a \b \f \n \r \t \v \\ \' \“

A rune-constant shall have a result type of rconst.

If the rune-constant is not an escape-sequence, the value of the rune shall be the
Unicode codepoint representing rune.

A‘rune-constant beginning with \x, \u, or \U shall interpet its value as a Unicode
codepoint specified in its hexadecimal representation by hex-digits.

A rune-constant containing a named-escape shall have a value based on the follow-
ing chart:

Escape sequence | Unicode codepoint | Escape sequence | Unicode codepoint
\0 | U+0000 \a | U+0007
\b | U+0008 \f | U+000C
\n | U+000A \r | U+000D
\t | U+0009 \v | U+000B
\\ | U+005C \' | U+0027
\" | U+0022

28

6.6.16 String constants

6.6.16.1
6.6.16.2

6.6.16.3

6.6.16.4

6.6.16.5

String-constant:
" string-chars gy
rawstring-charsp;
string-constant string-constant

string-chars:
string-char string-charsp;

string-char:
Any character other than \ or "
escape-sequence

rawstring-chars:
rawstring-char rawstring-chars

rawstring-char:
Any character other than *

A string-constant expression shall have a result type of const str.

If the first form of string-constant is used, the string’s data field shall refer to a UTF-
8 encoded sequence of Unicode codepoints, ascertained by encoding the sequence
of string-chars given in order, after interpreting escape codes per «b.615.17: Rune
constants».

If the second form of string-constant is used, the string’s data field shall refer to
a UTF-8 encoded sequence of Unicode codepoints, ascertained by encoding the
sequence of rawstring-chars given in order.

If the third form of string-constant is used, the string’s data field shall refer to a
UTF-8 encoded sequence of Unicode codepoints, ascertained by concatenating the
data field of the first string-constant and the data field of the second string-constant.

The length and capacity fields shall be set to the length in octets of the encoded
UTEF-8 data.

6.6.17 Array literals

6.6.17.1

array-literal:
[array-members,y 1

array-members:
expression , opr

expression ... ,opt
expression , array-members

An array-literal expression produces a value of an array type. The type of each

29

6.6.17.2

6.6.17.3

6.6.17.4

expression shall be uniform and shall determine the member type of the array value,
and the length of the array type shall be defined by the number of members.

If a type hint has been provided to an array literal which is an array type (or a type
alias which represents an array type), the member type will be inferred from this
array type. The initializer expressions for each value among array-members shall
receive this member type as a type hint. If the array-members is not specified, a
type hint must be provided.

The execution environment shall evaluate the array-members, ordered such that
any side-effects of evaluating the arguments occur in the order that the members
are listed, such that the Nth member provides the value for the Nth array member.

If the . .. form is used, the result’s array type shall be expandable. If a type hint is
available, it shall not be of a context-defined array type.

6.6.18 Struct literals

6.6.18.1

6.6.18.2

6.6.18.3

6.6.18.4

struct-literal:
struct { field-values ,,, }
identifier { struct-initializer .y }

struct-initializer:
field-values
field-values

field-values:
field-value
field-values , field-value

field-value:
name = expression
name : type = expression

struct-literal

A struct-literal produces a value of a struct type. The first form is the plain form,
and the second form is the named form.

If the plain form is given, the result type shall be a struct type defined by the
field-values, in order, with their identifiers and types explicitly specified. The first
form of field-value shall not be used in such a struct.

If the named form is given, the identifier shall identify a type alias (see «b 3T
Type aliases») which refers to a struct or union type. The result type shall be this
alias type.

Each field-value shall specify a field by its name, and assign that field in the result
value to the result of the expression given. The type of the named field, via the
named type alias in the first form, or the given type in the second form, shall

30

6.6.18.5

6.6.18.6

6.6.18.7

6.6.18.8

6.6.19 Plain

6.6.19.1

6.6.19.2

6.6.19.3

be provided to the initializer expression as a type hint. The field-values shall be
evaluated in the order in which they appear in the struct-literal.

If ... is not given, field-values shall be exhaustive, and include every field of the
result type exactly once. Otherwise, a diagnostic message shall be printed and the
translation phase shall abort.

If ... is given, any fields of the result type which are not included in field-values
shall be initialized to their default values. Each included field shall only be named
once. If a field is omitted which does not have a default value, a diagnostic message
shall be printed and the translation phase shall abort.

If the named type is a union type, the field-values shall be empty and . .. provided.
The union type must have a default value.

If the struct-literal form of the field-value is given, its fields shall be interpreted as
fields of the parent struct.

The following values are equivalent:
struct { a: int = 10, b: int = 20 }
struct { a: int = 10, struct { b: int =20 } }

expressions

plain-expression:
identifier
constant
array-literal
struct-literal

nested-expression:
plain-expression
(expression)
(tuple-items)

tuple-items:
expression , expression gy
expression , tuple-items

plain-expression is an expression class which represents its result value "plainly".
In the case of constants and literals, the value is represented by the result of those
expressions. In the case of an identifier, the expression produces the value of the
identified object.

nested-expression is an expression class provided to allow the programmer to
overcome undesirable associativity between operators.

The tuple-items form of nested-expression shall describe a fuple expression, and
have a result type which is the tuple described by the types of its expressions in the
order that they appear. If a type hint is available, the tuple items may be assigned
to the types of the respective tuple sub-types in the order that they appear. The

31

implementation shall cause the side-effects of each expression to occur in the order
that they appear.

6.6.20 Allocations

6.6.20.1

6.6.20.2

6.6.20.3

6.6.20.4

6.6.20.5

allocation-expression:
alloc (expression)
alloc (expression ...)
alloc (expression , expression)
free (expression)

An alloc expression allocates an object at runtime and initializes its value to the
first expression (the initializer). The result type of the initializer provides the
allocation’s object type. The result type of the allocation expression is, usually, a
pointer type whose secondary type is the object type:

The first form is the object allocation form. If the allocation expression is provided
a type hint of a pointer type, the secondary type of this pointer type shall be
provided to the initializer as its type hint. The execution environment will allocate
sufficient storage for the object type and initialize its value using the initializer
expression, then set its result to-a pointer to the new object. The object type must
have a defined size which is be greater than zero.

The second form is the copy allocation form. In this form, the initializer will
provide an object type which is either a slice or array type (or an alias thereof).
The execution environment will allocate storage sufficient to store an array equal
in length to the initializer, then copy the initializer’s slice or array items into this
array. The result value shall be set to a slice object whose secondary type is equal
to the secondary type of the initializer’s result type, whose data field refers to the
new array, and whose length and capacity fields are set to the length of the array.

The third form is the slice allocation form. In this form, the initializer will be
assignable to a slice or array type, and the second expression provides the desired
capacity for a new slice. The capacity shall be assignable to the size type. The
execution environment shall choose a capacity equal to or greater than this term,
then provision an array of that length and set each Nth value to the Nth value
of the initializer, for each value of N between 0 (inclusive) and the length of the
initializer (exclusive). The result of the allocation-expression shall be a slice whose
data field refers to this array, whose length is equal to the length of the initializer,
and whose capacity is set to the selected capacity.

In the slice allocation form, if the array specified by the initializer is expandable,
the second expression shall be used as the length instead of the capacity. The
execution environment shall choose a capacity equal to or greater than this value,
then for each N'th value of the allocated array from the length of the initializer (L,
inclusive) to the specified length (L') shall be initialized to the value at L — 1 in
the initializer. The length field of the resulting slice value shall be set to the L'.

The following allocates a slice of length 10 with all values set to zero:

32

6.6.20.6

6.6.20.7

let x: []lint = alloc([0...], 10)

In the alloc form, if the execution environment is unable to allocate sufficient
storage for the requested type, the execution environment shall print a diagnostic
message and abort. If the type hint is a nullable pointer type, the result type of the
allocation expression shall also be nullable, and null shall be returned instead of
aborting if sufficient storage cannot be provided.

The free form shall discard resources previously allocated with a alloc expression,
freeing them for future use. The expression shall evaluate to a pointer type, in which
case the object referred to by the pointer shall be freed, or a slice type, in which
case the array referred to by its data field shall be freed.

6.6.21 Assertions

6.6.21.1

6.6.21.2

6.6.21.3

6.6.21.4

6.6.21.5

6.6.22 Calls

6.6.22.1

assertion-expression:
static,,, assert (expression)
static,, assert (expression , string-constant)
static,, abort (string-constantep)

An assertion-expression is used to validate an assumption by the programmer by
asserting its truth. The result type of a assertion-expression is void.

expression shall be an expression of type bool, which shall be provided to it as a
type hint.

In the first two forms, this expression shall be evaluated in the execution environ-
ment, and if false, a diagnostic message shall be printed and the execution phase
aborted. The programmer may provide the string-constant to be included in the
diagnostic message.

If static is given, expression shall be limited to the «b®: Translation compat-
ible expression subset», shall be evaluated in the translation environment, and is
otherwise equivalent to the other forms.

The abort form shall cause the execution environment to print a diagnostic message
and abort. The programmer may provide the string-constant to be included in the
diagnostic message. An abort is a terminating expression.

call-expression:
postfix-expression (argument-list,,)

argument-list:
expression , opr

expression ... ,opt
expression , argument-list

A call-expression shall invoke a function in the execution environment and its

33

6.6.22.2

6.6.22.3

6.6.22.4

6.6.22.5

6.6.22.6

6.6.22.7

6.6.22.8

6.6.22.9

6.6.22.10

result shall be a value of the type specified by the postfix-expression’s function
result type. This evaluation shall include any necessary side-effects per «B-48.1:
Program execution».

The result type of the postfix-expression shall be restricted to a set which includes
all function types which do not have the @init, @fini, or @test attributes set, as
well as non-nullable pointers whose secondary type is included in the set.

The result type of the postfix-expression can be a function, a pointer to a function,
a pointer to a pointer to a function, and so on.

The function invoked shall be the function object the postfix-expression refers to,
selecting that object indirectly via any number of pointer types if appropriate.

The argument-list shall be a list of expressions whose types shall be assignable to
the types of the invoked function’s parameters, in the order that they are declared in
the invoked function’s result type. The types specified in the function’s prototype
shall be provided as type hints to each argument expression as appropriate.

The execution environment shall evaluate the argument-list, ordered such that any
side-effects of evaluating the arguments occur in the order that the arguments are
listed, to obtain the parameter values required to invoke the function.

If the invoked function uses Hare-style variadism, the argument-list shall provide
zero or more arguments following the last non-variadic parameter, all of which
must be assignable to the type of the variadic parameter.

If the final argument uses the ... form, it must occupy the position of a variadic
parameter and be of a slice or array type. The implementation shall interpret this
value as the list of variadic parameters.

If the invoked function uses C-style variadism, the function may provide zero or
more arguments following the final parameter. These arguments shall be of a type
with a non-zero size, but are otherwise unconstrained.

The specific means by which the invoked function assumes control of the execution
environment, and by which the arguments are provided to it, is implementation-
defined.

This is generally provided by the target’s ABI specification.

If the invoked function’s result type has the @noreturn attribute, the call expression
is considered to terminate.

34

6.6.23 Measurements

6.6.23.1

6.6.23.2
6.6.23.3

6.6.23.4

6.6.23.5

measurement-expression:
Size-expression
length-expression
offset-expression

Ssize-expression:
size (type)

length-expression:
len (expression)

offset-expression:
offset (field-access-expression)

Forward references: «b674: Field access»

A measurement-expression is used to measure objects. The result type shall be
size.

The size expression shall compute the size of the specified type.

The len expression shall compute the length of a bounded array, or the length
field of a slice object, referred to by expression. If an unbounded array object is
given, the translation environment shall print a diagnostic message and abort.

The object used for a length expression selected shall be the array or slice object
the expression refers to, selecting that object indirectly via any number of pointer
types if appropriate.

The offset expression shall determine the struct or tuple field which would be
accessed by field-access-expression and compute its offset.

6.6.24 Field access

6.6.24.1

6.6.24.2

field-access-expression:
postfix-expression . name
postfix-expression . integer-constant

A field-access-expression is used to access fields of «b3T3: Struct and union
types» and «B2T8: Tuple types». The result type of the postfix-expression shall
be constrained to a set which includes all struct, union, and tuple types, as well as
non-nullable pointers whose secondary type is included in the set.

The result type of the postfix-expression can be a struct or union or tuple, a pointer
to a struct or union or tuple, a pointer to a pointer to a struct or union or tuple,
and so on.

The object from which the field is selected shall be the struct or union object
the postfix-expression refers to, selecting that object indirectly via any number of

35

6.6.24.3

6.6.24.4

6.6.24.5

6.6.24.6

pointer types if appropriate.

If the postfix-expression’s result type is a union type, the first form shall be used.
The result of the field-access-expression shall be the union’s storage area interpreted
as the type of the field named by name, and the result type of the expression shall
be the type of the named field.

If the postfix-expression’s result type is a struct type, the first form shall be used.
The result of the field-access-expression shall be the value stored in the name field
of the result of the postfix-expression, and the result type of the expression shall be
the type of the named field.

If the postfix-expression’s result type is a tuple type, the second form shall be used.
The result of the field-access-expression shall be the Nth value stored in the tuple
which is the result of the postfix-expression, and the result type of the expression
shall be the type of the Nth value.

If the type of the struct object in the first term has the const flag, the result type
shall also have the const flag set, regardless of the flag’s value on the type of the
named field.

6.6.25 Indexing

6.6.25.1

6.6.25.2

6.6.25.3

6.6.25.4

6.6.25.5

6.6.25.6

indexing-expression:
postfix-expression [expression 1]

An indexing-expression shall access a specific value of a slice or array type. The
expression shall have an integer result type. The result type of the postfix-expression
shall be constrained to a set which includes all slice and array types, as well as
non-nullable pointers whose secondary type is included in the set.

The result type of the postfix-expression can be a slice or array, a pointer to a slice
or array, a pointer to a pointer to a slice or array, and so on.

The object from which the field is selected shall be the slice or array object the
postfix-expression refers to, selecting that object indirectly via any number of pointer
types if appropriate.

The result type of an indexing-expression is the secondary type of the slice or array
type given by the postfix-expression result type.

If the type of the array or slice object in the first term has the const flag, the
result type shall also have the const flag set, regardless of the flag’s value on the
secondary type.

The execution environment shall compute the result of expression to obtain /N for
selecting the N per the algorithm given in «B3TR: Slice and array types».

The execution environment shall perform a bounds test on the value of IV to ensure
it falls within the acceptable range for the given slice or array type. It shall test
that N < Z, where Z is the length of the bounded array type, or the length field
of the slice, whichever is appropriate. For unbounded array types, the bounds test
shall not occur. If the bounds test fails, a diagnostic message shall be printed and

36

the execution environment shall abort.

The implementation may perform a bounds test in the translation environment if is
able, print a diagnostic message, and abort the translation environment if it fails.

6.6.26 Slicing

6.6.26.1

6.6.26.2

6.6.26.3

6.6.26.4

6.6.26.5

6.6.26.6

slicing-expression:
postfix-expression [expressiong, .. expressiongy, 1

A slicing-expression shall have a result type of slice, which is computed a subset
of a slice or array object. The optional expressions shall have an integer result
type. The result type of the postfix-expression shall be constrained to a set which
includes all slice and array types, as well as non-nullable pointers whose secondary
type is included in the set.

The result type of the postfix-expression can be a slice or array, a pointer to a slice
or array, a pointer to a pointer to a slice or array, and so on.

The object from which the field is selected shall be the slice or array object the
postfix-expression refers to, selecting that object indirectly via any number of pointer
types if appropriate.

The first expression shall compute value L, and the second shall compute H. If
absent, L = 0 and H = length, where length shall be equal to the length of a
bounded array type or the length of a slice type, represented in either case by the
result of postfix-expression. If H is not specified, and postfix-expression is of an
unbounded array type, the translation environment shall abort.

The resulting slice value shall have its data field set from, in the case of an array
type, the address of the array; or in the case of a slice type, the data value of the
source object; plus L x S, where S is the size of the slice or array’s secondary type.

The resulting slice value shall have its length field set to H — L, and its capacity
field set to the length of the source object minus L. If the length of the object is
undefined, the capacity shall be set to H — L instead.

The secondary type of the resulting slice type shall be equivalent to the secondary
type of the slice or array type given by postfix-expression. The resulting slice type
shall inherit the const attribute from this type.

37

6.6.27 Appending

6.6.27.1

6.6.27.2

6.6.27.3

6.6.27.4

6.6.27.5

6.6.27.6

6.6.27.7

6.6.27.8

slice-mutation-expression:
append-expression
insert-expression
delete-expression

append-expression:

static,,, append (object-selector , expression)
static,,, append (object-selector , expression ...)
static,,, append (object-selector , expression , expression)

An append-expression shall append a value, or values, to the slice object specified
by the first argument. Valid result types for object-selector shall either be a slice
type, or a pointer to a valid result type. The selected object shall be mutable and
non-const. The member type of this slice shall be the expression’s member type.
The result of an append shall be void.

The second term of an append expression is the append values. In the first form, the
append values shall specify a single value whose type is assignable to the member
type. In the second form, the expression shall have a valid result type which shall
be an array or slice whose member type is the append expression’s member type,
or a pointer to a valid result type.

The execution environment shall ensure that the capacity of the object is at least
N > L' + L?, where L' is the object length-and L? is the length of the append
values, reallocating the underlying storage if necessary. If sufficient storage cannot
be allocated, the execution environment shall print a diagnostic message and abort.
The length of the object shall be set to L' + L2.

The third form of an append-expression shall specify an expandable array as its
second term, and its third term shall be assignable to size. This form shall behave
similarly to the second form, except that the new length and capacity of the object
is given by the third term.

The execution environment shall assign values of the object slice from index N =
L' (inclusive) to N = L' 4+ L? (exclusive) from each append values at index
N — L'. In the third form of append-expression, the last value of append values
shall be assigned for values N = L' + L? (inclusive) up to the index given by the
third term (exclusive).

The static forms shall be equivalent to the non-static forms except that they shall
never cause the underlying slice to be reallocated. If the operation would require
more space than the capacity of the slice provides, the execution environment shall
print a diagnostic message and abort.

The side-effects shall occur in the following order: object-selector; then the length
term, if present; then the append values.

The object selector shall be not be provided a type hint. If ... is used, the append
values shall be given the object type as its type hint; if not, it shall receive the

38

member type as its type hint. The length will receive a type hint of size if
applicable.

6.6.28 Inserting

6.6.28.1

6.6.28.2

6.6.28.3

6.6.28.4

6.6.28.5

6.6.28.6

6.6.28.7

6.6.28.8

insert-expression:
static,,, insert (indexing-expression , expression)
static,,; insert (indexing-expression , expression ...)

An insert-expression shall insert a value, or values, into the slice object specified
by the first argument. The indexing-expression specifies both the slice object and
an index at which the new values shall be inserted, or the insertion index. The
selected object shall be mutable and non-const. The member type of this slice shall
be the expression’s member type. The result of an insert shall be void.

The second term of an insert expression s the insert values. In the first form, the
insert values shall specify a single value whose type is assignable to the member
type. In the second form, the expression shall have a valid result type which shall
be an array or slice whose member type is the append expression’s member type,
or a pointer to a valid result type.

The execution environment shall ensure that the capacity of the object is at least
N > L' + L?, where L' is the object length and L? is the length of the insert
values, reallocating the underlying storage if necessary. If sufficient storage cannot
be allocated, the execution environment shall print a diagnostic message and abort.
The length of the object shall be set to L' + L?.

After ensuring sufficient space is available for the new items, the execution en-
vironment shall copy or move each item N such that from N = [(inclusive) to
N'= 1 + L? (exclusive), each item is placed at I + L? + N — 1, causing the items
to "shift" over to accomodate the insert values.

The execution environment shall assign values of the object slice from index N = I
(inclusive) to N = I + L? (exclusive) from each insert value in order.

The static forms shall be equivalent to the non-static forms except that they shall
never cause the underlying slice to be reallocated. If the operation would require
more space than the capacity of the slice provides, the execution environment shall
print a diagnostic message and abort.

The side-effects of the indexing-expression shall occur before the side-effects of
the insert values.

The object selector shall be not be provided a type hint. If ... is used, the append
values shall be given the object type as its type hint; if not, it shall receive the
member type as its type hint. The length will receive a type hint of size if
applicable.

39

6.6.29 Deleting

6.6.29.1

6.6.29.2

6.6.29.3

6.6.29.4

6.6.29.5

delete-expression:
static,, delete (indexing-expression)
staticop, delete (slicing-expression)

A delete-expression shall remove a value, or values, from the slice object specified
by the first argument. The selected object shall be mutable and non-const. The
result of a delete shall be void.

Should a indexing-expression be used, it shall specify the index of a single value
as the deleted items. Should a slicing-expression be used, it shall specify a range
of values as the deleted items.

The execution environment shall set the length of the slice object to L' — L2, where
L! is its previous length and L? is the number of deleted items. Starting from the
first index specified by the indexing-expression or slicing-expression, /, each item
at index N + L' shall be copied to IV, "shifting" items over to reclaim the space
previously used by the deleted items.

The execution environment may decrease the slice object’s capacity, re-allocating
its data field if necessary, in order to reclaim unused memory. This re-allocation,
if performed, shall not fail. The slice object shall be updated to reflect the new
capacity if necessary.

The static forms shall be equivalent to the non-static forms except that they shall
never cause the underlying slice to be reallocated.

6.6.30 Error propagation

6.6.30.1

6.6.30.2

6.6.30.3

6.6.30.4

error-propagation:
postfix-expression ?
postfix-expression |

? and ! are the error propagation operators. The postfix-expression shall have a
result type which is either a type with the error flag set, or a tagged union type
which has a type with the error flag set among its member types.

The result type of an error propagation expression shall be the same as the type
of the postfix-expression, without its error cases, or void if no non-error types
remain. The result is a tagged union whose member types are the subset of the
original type which do not include the error flag; or, if there is only one such type,
that type without a tagged union; or, if there are no such types, void. If the original
type is not a tagged union type, the translation phase shall abort with a diagnostic
message.

An error propagation expression shall perform an error fest which checks if the
result value of the postfix-expression is of a non-error type. If so, that value shall
be the result of the error propagation expression.

In the ? form, if the error test fails (i.e. an error is found), the error type shall be

40

assignable to the current function’s return type, and that value shall be returned
from the function.

6.6.30.5 Inthe ! form, if the error test fails (i.e. an error is found), the execution environment
shall print a diagnostic message and abort.

6.6.30.6 If a type hint is provided to the error propagation expression, the same type shall
be provided to the postfix-expression.

6.6.31 Postfix expressions

postfix-expression:
nested-expression
call-expression
field-access-expression
indexing-expression
slicing-expression
error-propagation

object-selector:
identifier
indexing-expression
field-access-expression

6.6.31.1 postfix-expression is an expression class for expressions whose operators use postfix
notation.

6.6.31.2 object-selector defines a subset of postfix expressions which refer to objects, for use
in other parts of the grammar.

6.6.32 Variadic expressions

variadic-expression:
vastart ()
vaarg (object-selector)
vaend (object-selector)

6.6.32.1 = Variadic expressions are provided for compatibility with the C programming lan-
guage as specified by ISO/IEC 9899:2011. Implementation support is optional:
implementations which do not provide C ABI compatibility must parse these ex-
pressions, print a diagnostic message, and abort.

These expressions are used only for C compatibility. "Hare-style" variadism is
handled separately.

6.6.32.2 The vastart expression shall have a result type of valist, and may only be used
within a function body which uses C-style variadism. It will initialize a structure
compatible with the "va_list" type defined by ISO/IEC 9899:2011 section 7.16.3
such that the first use of "va_arg" would return the first variadic parameter.

41

6.6.32.3

6.6.32.4

The vaarg expression accepts an object-selector which must be of the valist type.
The expression shall also be provided a type hint. The result of the expression shall
be the next variadic parameter from the valist object of the type provided by the
type hint, and the object shall be advanced to the next parameter. This expression
shall behave in a manner compatible with ISO/IEC 9899:2011 section 7.16.1.1°s
"va_arg" macro.

The vaend expression accepts an object-selector which must be of the valist type.
The implementation shall finalize the valist object in an implementation-defined
manner which is compatible with ISO/IEC 9899:2011 section 7.16.1.2. The result
type of this expression is void.

6.6.33 Builtin expressions

builtin-expression:
allocation-expression
assertion-expression
deferred-expression
measurement-expression
slice-mutation-expression
postfix-expression
variadic-expression

6.6.34 Unary arithmetic

6.6.34.1
6.6.34.2

6.6.34.3

6.6.34.4

unary-expression:
builtin-expression
compound-expression
match-expression
switch-expression
unary-operator unary-expression

unary-operator: one of:
+ - ~ ! x &

A unary expression applies a unary-operator to a single value.

The + and - operators shall respectively perform unary positive and unary negation
operations. The result type shall be equivalent to the type of unary-expression,
which shall be of a numeric type.

The ~ operator shall perform a binary NOT operation, inverting each bit of the
value. Its result type shall be equivalent to the type of unary-expression, which
shall be of an integer type.

The ! operator shall perform a logical NOT operation. The result type, and the
type of unary-expression, shall both be bool. If the unary-expression is true, the
result shall be false, and vice-versa.

42

6.6.34.5

6.6.34.6

The * operator shall dereference a pointer, and return the object it references. The
type of unary-expression shall be a pointer type, and the result type shall be the
pointer’s secondary type. The pointer type shall not be nullable.

The & operator shall take the address of an object. The result type shall be a pointer
whose secondary type is the type of the object selected by the unary-expression.
If the unary-expression is not an object-selector, the ensuing pointer shall only be
valid within the current function.

The following table is informative.

Operator | Meaning

+ | Positive

- | Negation

~ | Binary NOT
! | Logical NOT

* | Dereference pointer
& | Take address

6.6.35 Casts and type assertions

6.6.35.1

6.6.35.2

6.6.35.3

6.6.35.4
6.6.35.5

6.6.35.6

cast-expression:
unary-expression
cast-expression : type
cast-expression as type
cast-expression 1is type

A cast expression interrogates or converts the type of an object. The first form
illustrates the precedence. The second and third forms (: and as) have a result type
specified by the type; and the fourth form (is) has a result type of bool.

Each form shall provide the specified type as a type hint to its cast-expression.

The second form is a fype cast, and shall not fail. It shall cause the execution
environment to convert or interpret the value as another type.

A type which may be cast to another type is considered castable to that type.

All types are castable to themselves. The set of other types which are castable to a
given type are given by the following table:

The cast-expression being acted upon must not be a terminating expression.

43

6.6.35.7

6.6.35.8

6.6.35.9

6.6.35.10

6.6.35.11

6:6.35.12

6.6.35.13

6.6.35.14

6.6.35.15

Source type | Casts to
Floating types | Any numeric type
Integer types | Any numeric type or enum type
uintptr | Any pointer type or null
Any pointer type | Any pointer type, uintptr, or null
Enum types | Any enum type or numeric type
Array and slice types | Any array or slice type
Slice types | Any pointer to an array type
Type alias | Any type the underlying type could cast to
Any type | Any type alias with an underlying type it may be cast to
u8 | char
char | u8
rune | u32
u32 | rune
null | Any pointer type or uintptr
Tagged unions | See below

Tagged union types are mutually castable with any type which is found among its
members, including the otherwise non-castable types of bool and void, as well as
any other tagged union type.

When a flexible constant type is cast to another type, the «610: Flexible constant
promotion algorithm» shall be applied to them, and the flexible constant shall be
castable to the other type if the promotion succeeds.

When an integer type is cast to an integer of less precision, it shall be truncated
towards the least significant bit.

When a signed type is cast to a unsigned type, the sign bit shall be copied to the
most significant bit of the unsigned type, and vice versa.

When a floating type is cast to an integer, the resulting value shall be equal to the
nearest integer with smaller or equal absolute value. If the destination type has
insufficient precision to represent the resulting integer, it shall be truncated towards
the least significant bit.

When casting an integer to a floating point type, if the destination type lacks the
precision to represent the value, it shall be truncated towards zero.

Casting a pointer type to uintptr, and then back to the pointer type, shall yield the
same pointer.

However, casting uintptr to any other integer type and back again may truncate
towards the least significant bit and is not guaranteed to yield the same pointer.

The const flag shall not affect the rules for casting one type to another. The same
holds for the error flag as well.

The third form is a type assertion. In this form, cast-expression shall be of a tagged
union type or a nullable pointer type.

In the former case, type shall be a constituent type of that tagged union. The
cast-expression shall be computed, and if the tag does not match type, a diagnostic
message shall be printed and the execution environment shall abort. Otherwise,

44

6.6.35.16

the result type is type.

In the latter case type shall be a non-nullable pointer type. The cast-expression
shall be computed, and if the resulting pointer equals null, a diagnostic message
shall be printed and the execution environment shall abort. Otherwise, the result

type is type.

The fourth form is a type test. In this form, cast-expression shall be of a tagged
union type, and type shall be a constituent type of that tagged union. The result
type is bool, and shall be true if the selected tag of cast-expression is type, or
false otherwise.

6.6.36 Multiplicative arithmetic

6.6.36.1

6.6.36.2

6.6.36.3
6.6.36.4

6.6.36.5

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression [cast-expression
multiplicative-expression % cast-expression

A multiplicative-expression multiplies (*), divides (/), or obtains the remainder
between (%) two expressions. The first form illustrates the precedence. The
operands and result type shall be subject to the «b7: Type promotion» rules.

In the case of division or modulus, the first term is the dividend, and the second
term is the divisor. The result of the modulus shall have the same sign as the
dividend.

A modulus (%) operation shall be performed with operands of integer types only.

If -an operation would cause the result to overflow the result type, it is truncated
towards the least significant bits in the case of integer types, and towards zero in
the case of float types. Integer divisions which would produce a fractional part are
rounded towards zero.

The implementation shall ensure that any side-effects of the first term shall occur
before side-effects of the second term.

6.6.37 Additive arithmetic

6.6.37.1

6.6.37.2

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

An additive-expression adds (+) two operands, or subtracts (-) one from another.
The first form illustrates the precedence. The operands and result type shall be
subject to the «b2: Type promotion» rules.

In the case of subtraction, the first term is the minuend, and the second term is the

45

6.6.37.3

6.6.37.4

subtrahend.

If an operation would cause the result to overflow or underflow the result type, it is
truncated towards the least significant bits in the case of integer types, and towards
zero in the case of float types. In the case of signed types, this truncation will cause
the sign bit to change.

The implementation shall ensure that any side-effects of the first term shall occur
before side-effects of the second term.

6.6.38 Bit shifting arithmetic

6.6.38.1

6.6.38.2

6.6.38.3

6.6.38.4

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

A shift-expression performs a bitwise left-shift (<<) or right-shift (>>). The first
form illustrates the precedence. The result type shall be the type of the first operand.
Both operands shall be of unsigned integer types.

shift-expression << N shall shift each bit towards the most significant bit NV
places, and set the least significant IV bits to zero. The /N most significant bits shall
be silently discarded. If IV is greater than the size in bits of the type, the result
shall be zero.

This operation is equivalent to multiplying shift-expression by 2NV

shift-expression >> N shall shift each bit towards the least significant bit N
places. The most significant bits shall be set to either zero or one depending on
the signedness of shift-expression: If it is signed, then the /N most significant bits
shall be set to the value of the sign bit. If it unsigned, then the N most significant
bits shall be set to zero. The IV least significant bits shall be silently discarded. If
N is greater than the size in bits of the type, the result shall be zero.

This operation is equivalent to dividing shift-expression by 2V

The implementation shall ensure that any side-effects of the first term shall occur
before side-effects of the second term.

46

6.6.39 Bitwise arithmetic

6.6.39.1

and-expression:
shift-expression
and-expression & shift-expression

exclusive-or-expression:
and-expression
exclusive-or-expression " and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The implementation shall ensure that any side-effects of the first term shall occur
before side-effects of the second term.

6.6.40 Logical comparisons

6.6.40.1

6.6.40.2

6.6.40.3

6.6.40.4

6.6.40.5

6.6.40.6

comparison-expression:
inclusive-or-expression
comparison-expression < inclusive-or-expression
comparison-expression > inclusive-or-expression

comparison-expression <= _inclusive-or-expression

comparison-expression >= inclusive-or-expression
equality-expression:

comparison-expression

equality-expression == comparison-expression

equality-expression = comparison-expression

A comparison-expression determines which operand is lesser than (<), greater than
(>), less than or equal to (<=), or greater than or equal to (>=) the other. The
operands shall be numeric, and are subject to the «b71: Type promotion» rules.
The result type shall be bool.

The result of the < operator shall be true if the first operand is mathematically less
than the second operand and false otherwise.

The result of the > operator shall be true if the first operand is mathematically
greater than the second operand and false otherwise.

The result of the <= operator shall be true if the first operand is mathematically
less than or equal to second operand and false otherwise.

The result of the >= operator shall be true if the first operand is mathematically
greater than or equal to second operand and false otherwise.

An equality-expression determines if two operands are equal to one another. The
result type is bool. If the types of the == or != operators are numeric, they shall be

47

subject to «b72: Type promotion». Otherwise, each operand must be of the same
type, and that type must both be either str, bool, rune, or a pointer type.

6.6.40.7 The result of the == operator shall be true if the first operand is equal to second
operand in value, and false otherwise.

6.6.40.8 The result of the != operator shall be true if the first operand is not equal to second
operand in value, and false otherwise.

6.6.40.9 Two str types shall be equal if both strings have the same length and octets.
Otherwise, they shall not be equal.

6.6.40.10 The implementation shall ensure that any side-effects of the first term shall occur
before side-effects of the second term.

6.6.41 Logical arithmetic

logical-and-expression:
equality-expression
logical-and-expression && equality-expression

logical-xor-expression:
logical-and-expression
logical-xor-expression ~*~ logical-and-expression

logical-or-expression:
logical-xor-expression
logical-or-expression || ' logical-xor-expression

6.6.41.1 For all cases of logical arithmetic, both terms shall be of the bool type, and the
result type shall be bool.

6.6.41.2 _ &&shall compute a logical and operation, and shall be true if both terms are true,
and false otherwise.

6.6.41.3 ~~ shall be a logical exclusive or operation, and shall be true if the terms are not
equal to each other, and false otherwise.

6.6.41.4 || shall be a logical or operation, and shall be true if either term is true, and
false otherwise.

6.6.41.5 Ifthefirst term of logical-and-expression is false, or the first term of logical-or-expression

is true, the implementation shall ensure that the side-effects of the second term do
not occur.

48

6.6.42 If expressions

6.6.42.1

6.6.42.2

6.6.42.3

6.6.42.4

6.6.42.5

if-expression:
if conditional-branch
if conditional-branch else if-expression
if conditional-branch else expression

conditional-branch:
(expression) expression

An if-expression chooses which, if any, expression to evaluate based on a logical
criteria. In all forms, the result type of expression shall be bool. If a type hint is
provided, the expression shall receive it as a type hint.

When executing a conditional-branch, the implementation shall evaluate the

expression (the condition), and if true, the implementation shall execute the
corresponding expression (the branch), ensuring that all side-effects occur. If the
condition is false, the branch shall not be executed and shall not cause side-effects.

In the second form, the first conditional-branch shall be executed. If it was false,
the second-order if-expression shall be executed; otherwise not. In the latter case,
any side-effects of the second condition or branch shall not occur.

In the third form, the conditional-branch shall be executed. If it was false, the
expression shall be executed. The result value shall be selected from the result of
the branch which is executed.

In the first form, the result type is void. In the second form, the result type is void
unless the third form is present in the N**-order sub-branch for any value of N.
In this case, and in the case of the third form used in the first order, if a type hint
is.provided and all non-terminating branches are assignable to that type, the result
type shall be the type given by the type hint. If all branches terminate, the result
type shall be void and the if expression shall terminate. Otherwise, the result type
shall be the «69: Result type reduction algorithm» applied to the result types of
the non-terminating branches.

6.6.43 For loops

6.6.43.1

for-loop:
for (for-predicate) expression

for-predicate:
expression
binding-list ; expression
expression ; expression
binding-list ; expression ; expression

A for-loop executes its expression, the body of the loop, zero or more times, SO
long as a condition is true. Its result type is void.

49

6.6.43.2

6.6.43.3

In the first form, for-predicate specifies the condition with its expression. In the
second form, the binding-list is the binding and the expression is the condition. In
the third form, the first expression is the condition, and the second expression is
the afterthought. In the fourth form, the binding-list is the binding, and the two
expressions are respectively the condition and afterthought. The result type of the
condition shall be bool, and this shall be provided as a type hint.

The implementation shall establish a new scope for the expression, then, if present,
it shall evaluate the binding in this scope. The implementation shall then evaluate
the condition. If it is true, the expression shall be evaluated and all of its side-
effects shall occur; this process is an iteration. When the iteration is complete,
the implementation shall evaluate the afterthought, if present, and then repeat the
process, until the condition evaluates to false.

6.6.44 Switch expressions

6.6.44.1

6.6.44.2

6.6.44.3

switch-expression:
switch (expression) { ‘switch-cases '}

switch-cases:
switch-case ;
switch-case ; switch-cases

switch-case:
case case-options => expression-list
case => expression-list

case-options:
expression. , opr
expression , case-options

Forward references: «b:6-49: Compound expressions»

A switch expression evaluates a value (expression, the switching expression), then
compares it with a number of switch-cases, taking whichever branch matches the
value. The switching expression’s result type must either be numeric or be a str,
bool, rune, or a pointer type.

Each of the case-options specifies a value to compare with, given by expression.
This expression shall be limited to the «bR: Translation compatible expression
subset», and its result type shall be equivalent to the result type of the switching
expression.

Each switch-case introduces an implicit compound-expression which the provided
expression-list gives the expressions of. The implementation shall evaluate the
expression-list of the corresponding switch-case if any of the case-options is equal
to the switching expression’s result, setting the result of the overall switch expression
to the result of the selected switch-case.

As such, the appropriate way to set the result of a switch expression is with a

50

6.6.44.4

6.6.44.5

6.6.44.6

6.6.44.7
6.6.44.8

vield-expression. The semantics of deferred-expression, bindings, and so on, are
also implicated.

The form of switch-case without case-options indicates any case which is not
selected by the other cases. Only one case of this form shall appear in the switch
expression.

The switch cases shall be exhaustive, meaning that every possible value of the
switching expression is accounted for by a switch-case. It shall also be preicsely
exhaustive: no two cases shall select for the same value.

The implementation shall ensure that side-effects of the switch value expression
occur before those of the selected case, and that side-effects of non-selected cases
do not occur.

If a type hint is provided, each branch shall receive it as a type hint.

If a type hint is provided and all non-terminating branches are assignable to-that
type, the result type shall be the type given by the type hint. If all branches
terminate, the result type shall be void and the switch expression shall terminate.
Otherwise, the result type shall be the «69: Result type reduction algorithm»
applied to the result types of the non-terminating branches.

6.6.45 Match expressions

6.6.45.1

6.6.45.2

6.6.45.3

match-expression:
match (expression) { match-cases }

match-cases:
match-case ;
match-case ; match-cases

match-case:
case let name : type => expression-list
case type => expression-list
case => expression-list

Forward references: «6-6-249: Compound expressions»

A match expression evaluates a value (expression, the matching expression), then
selects and evaluates another expression based on its result type. The result type
of the matching expression must be a tagged union or nullable pointer type, or an
alias of either.

If the matching expression has a tagged union type, each match-case shall specify a
type which is either a member of that tagged union, or another tagged union which
supports a subset of the matching expression’s type, or a type alias which refers to
a qualifying type.

If the matching expression has a nullable pointer type, one match case shall be
null, and another shall be the equivalent non-nullable pointer type, or a type alias

51

which refers to a qualifying type.

6.6.45.4 Each match-case introduces an implicit compound-expression which the provided
expression-list gives the expressions of. The implementation shall evaluate the
expression-list of the corresponding match-case if the value of the matching ex-
pression is of the type specified by this match case, or can be assigned from it, setting
the result of the overall match expression to the result of the selected match-case.

As such, the appropriate way to set the result of a match expression is with a
vield-expression. The semantics of deferred-expression, bindings, and so on, are
also implicated.

6.6.45.5 The form of match-case without a type indicates any case which is not selected by
the other cases. Only one case of this form shall appear in the match expression.

6.6.45.6 The first form of match-case, if selected, shall cause the implementation to cast the
match expression to the selected type and assign the resulting value to name. It
shall insert this binding into the scope of the implicit compound-expression of the
selected case.

6.6.45.7 The match cases shall be exhaustive, meaning that every possible type of the
matching expression is accounted for by a match-case. It shall also be preicsely
exhaustive: no two cases shall select for the same type.

6.6.45.8 The implementation shall ensure that side-effects of the match value expression
occur before those of the selected case, and that side-effects of non-selected cases
do not occur.

6.6.45.9 If a type hint is provided, each branch shall receive it as a type hint.

6.6.45.10 If a type hint is provided and all non-terminating branches are assignable to that
type, the result type shall be the type given by the type hint. If all branches
terminate, the result type shall be void and the match expression shall terminate.
Otherwise, the result type shall be the «A9: Result type reduction algorithm»
applied to the result types of the non-terminating branches.

6.6.46 Assignment

assignment:
object-selector assignment-op expression
* unary-expression assignment-op expression

slicing-expression = expression
assignment-op: one of:
= <= -= k= = °/°= <K= >>= &: |= A= &&: ||= AN=

6.6.46.1 An assignment expression shall cause the object given by the first term to be
assigned a new value based on the value given by the second term. The type of the
object shall be provided as a type hint to the secondary expression(s).

6.6.46.2 If the assignment-op is =, the first term shall be assigned the value given by the
second term. Otherwise, the assignment el op= el shall be equivalent to the
assignment el = el op e2, but the side effects of el shall only occur once.

52

6.6.46.3 In the first form, the object-selector selects the object to be modified. The type of
this object shall not be of a const type.

6.6.46.4 In the second form, the unary-expression shall have a result type of a non-nullable,
non-const pointer type, and the object which is assigned shall be the secondary
object to which the pointer object refers. The second term shall be assignable to
the pointer’s secondary type.

6.6.46.5 In the third form, the expression shall be of a slice type, and shall have a length
equal to the slice given by slicing-expression. The first term shall not be of a const
type, and the lengths of the two slices shall be equal. The contents of the slice
given by the second term shall be copied into the slice given by the first term.

6.6.46.6 The second term shall be assignable to the object. Assignability rules are stricter
than castability rules. All types are assignable to‘themselves. The set of other
types which are assignable to a given type are given by the following table:

Object type | May be assigned from

Mutable type | Constant types assignable to the object type
Signed integer types | Signed integer types of equal or higher precision
Unsigned integer types | Unsigned integer types of equal or higher precision
Floating-point types | Any floating-point type of equal or higher precision
Nullable pointer types | Non-nullable pointer type of the same secondary type
Nullable pointer types | null
Slice types | Array type of the same secondary type and definite length
Slice types | [1void
Array types of undefined size | Array types of defined size
Tagged union types | See notes
Type aliases | Any type assignable to the secondary type
void | Any type
* void | Any non-nullable pointer type
nullable * void | Any pointer type
* const char | str

The implementation shall perform any necessary conversion from the source type
to the destination type.

6.6.46.7 Pointers to array types are mutually assignable if their secondary types are mutually
assignable.

6.6.46.8 A pointer to a type is assignable to a pointer to a secondary type if the primary
type is a struct type which contains the secondary type at offset zero, or if the type
at offset zero is a type which would be assignable under these rules.

6.6.46.9 Tagged union types may be assigned from any of their constituent types. Tagged
unions may also be assigned from any type which is assignable to exactly one of
its constituent types. Additionally, tagged unions may be assigned from any other
tagged union type, provided that the set of constituent types of the destination type
is a superset of the set of constituent types of the source type.

6.6.46.10 const types have the same assignability rules as the equivalent non-const type.
Types with the error flag set have the same assignability rules as the equivalent
type with the flag unset.

53

6.6.46.11

6.6.46.12

6.6.46.13

If at least one of the types is a flexible constant, the «AT0: Flexible constant pro-
motion algorithm» shall be applied to them, and they shall be considered mutually
assignable if the promotion succeeds.

In the context of an assignment expression, «<6.6.40.2: Assignment» prevents the
modification of objects with a const type. However, the assignability rules are
referred to in many other contexts throughout the specification, and in these con-
texts, unless otherwise specified, non-const types are assignable to const types.
For example, a binding which specifies a const type may use a non-const type for
its expression.

For assignment of * const char from str types, see the notes on «b633: Casts
and type assertions».

The implementation shall ensure that any side-effects of the first term shall occur
before side-effects of the second term.

6.6.47 Variable binding

6.6.47.1

6.6.47.2

6.6.47.3

binding-list:
static,, let bindings
static,, const bindings

bindings:
binding , opt
binding , bindings

binding:
name = expression
name : type = expression
(' binding-names) = expression
(Dinding-names) : type = expression

binding-names:
name , name
name , binding-names

A binding-list shall cause one or more objects to become available in the present
scope. Each object shall be identified by its name, and shall have its initial value
set to the result of the expression or expression. The result type of a binding list
expression is void.

In the first form of binding-list, the type of the object shall be equivalent to the
result type of the expression. In the second form, the type shall be as indicated,
and the result type of the expression shall be assignable to this type. In this second
form, the type specified is used as a type hint for the expression.

The third and fourth forms of binding are the fuple unpacking form, and in this
case, the type and expression shall be of a tuple type with a number of values equal
to the number of times name is given. The implementation shall create separate

54

6.6.47.4

6.6.47.5

6.6.47.6

6.6.47.7

6.6.47.8

6.6.47.9

bindings for each name, of the type of the corresponding tuple value, and initialize
them to that value from the tuple.

If any name is _ (an underscore), a binding shall not be created, but any side-effects
of the initializer shall still occur.

If the const form is used, the type of each binding shall be modified to include the
const flag. If the let form is used, the type of each binding which uses the first
form of binding shall be modified to omit the const flag.

If the static form is used, the variables shall be allocated statically, such that
they are only initialized once and their previous value, accounting for any later
mutations, is preserved each time the binding expression is encountered, including
across repeated or recursive calls to the enclosing function. In this case, the
initializer must use the «A&: Translation compatible expression subset».

If a binding gives a name which is already defined in the current scope, the new
binding shall shadow the earlier binding, causing any later references to this name
to resolve to the newer binding.

If the second form of binding is used and the name is not already in use in this
scope, the name shall be bound prior to the evaluation of the expression, and may
be used in the expression only as the object of the unary addressing operator (&).

The type of the binding shall not use a type which has a zero or undefined size.
If the type of a binding is a flexible constant type, it shall first be lowered to its
default type.

6.6.48 Deferred expressions

6.6.48.1

6.6.48.2

6.6.48.3

6.6.48.4

6.6.48.5

deferred-expression:
defer expression

A deferred-expression causes another expression to be deferred until the termina-
tion of the current scope. The result type is void.

The implementation shall cause the expression to be evaluated upon the termination
of the current scope, either due to normal program flow, or due to encountering a
terminating expression.

If several expressions are deferred in a single scope, their side-effects shall occur
in the reverse of the order that they appear in the program source.

Ifthe current scope is terminated before a deferred-expression (but not an expression
which was already deferred) would be evaluated, the side-effects of the expression
shall not occur.

A deferred-expression shall not appear as a descendant of the expression tree
formed by expression.

55

6.6.49 Compound expressions

6.6.49.1

6.6.49.2

6.6.49.3

6.6.49.4

6.6.49.5

6.6.49.6

expression-list:
expression ;
expression ; expression-list

compound-expression:
label,y, { expression-list }

label: exactly:
name

A compound-expression evaluates any number of expressions in sequence. If a
label is present, the expression is considered labelled.

The result of a compound-expression shall be void unless the expression is selected
by one or more yield-expressions. In that case, the result type shall be the «b3:
Result type reduction algorithm» applied to the result types of the yield expressions.

If a type hint is provided to an compound-expression, the hint shall be provided to
the expression of any yield-expression which selects that compound-expression.

The expressions shall be evaluated such that the side-effects of each all occur in
the order that each expression appears.

If any of the expressions terminate, the compound-expression is considered to
terminate, unless the expression which would cause the compound-expression is a
yield-expression which selects this compound-expressions scope. There shall be no
expressions following the first terminating expression in a compound-expression.

The compound-expression shall establish a new scope whose parent is the scope
in which the compound-expression resides.

6.6.50 Control expressions

6.6.50.1

control-expression:
break label,,
continue [abel,,
return expression,p;
yield-expression

yield-expression:
yield
yield expression
yield label
yield label , expression

A control-expression causes a selected expression to terminate in a specific way.
All control expressions are terminating expressions, and their result type is void.

56

6.6.50.2

6.6.50.3

6.6.50.4

6.6.50.5

6.6.50.6

The rules for selection of an applicable expression vary based on the kind of
control expression used. If a label is used, it shall select the corresponding labelled
compound-expression from the ancestors of the control-expression, and the selected

expression shall meet the requirements for the appropriate control expression type.
Otherwise, the first qualifying compound-expression or body of a for-loop is used,
ordered such that the nearest ancestor is considered first. If no suitable expression
is selected, a diagnostic message will be displayed and the translation phase shall
terminate.

In the break and continue forms, the selected expression shall be the body of
a for-loop. The break form shall cause the loop to abort without evaluating the
condition or the afterthought. The continue form shall cause the loop to repeat
immediately, running the afterthought, re-testing the condition, and repeating the
loop if true.

The return form shall select the compound-expression which is the body of the

function-declaration within which it appears. The expression shall be used as the
result value for the function, or, if absent, void shall be used. This expression shall
receive the function’s result type as a type hint, and the result shall be assignable
to that type.

The yield-expression form shall select any compound-expression which is not
eligible for the other forms; that is, any compound expression which is not the
body of a function or loop. If an expression is provided, it shall not terminate, and
shall be used as the result value for the compound-expression. See the description
of compound-expression for details on the type semantics associated with a yield
expression.

In any of these cases, the implementation shall ensure that side-effects do not occur
for any expressions which are lexically situated affer the control-expression within
the selected compound-expression.

6.6.51 High-level expression class

expression:
assignment
binding-list
logical-or-expression
if-expression
for-loop
control-expression

6.7 Type promotion

6.7.1

The operands of some arithmetic expressions are subject to type promotion, to allow for
arithmetic between disjoint types. The operand of lower precision may be promoted, or
implicitly cast, to the precision of the more precise operand. Unless explicitly covered by

57

6.7.2

6.7.3

6.7.4

6.7.5

6.7.6

6.7.7

6.7.8

6.7.9

6.7.10

6.7.11

the following cases, operands shall not be promoted, and the translation environment shall
print a diagnostic message and abort for incompatible combinations of operand types.

For expressions where the result type is determined by type promotion, the result type shall
be equivalent to the type of the operand which has the highest precision.

For expressions involving at least one flexible constant type, the result type shall be deter-
mined by the «bT0: Flexible constant promotion algorithm».

For expressions involving two integer types, the type of lower precision may be promoted
to the type of higher precision only if the signedness is the same for each operand. A type
cannot be promoted to uintptr.

An integer type may be promoted to an enum type whose storage is the same as the integer’s
storage.

For expressions involving floating-point types, 32 may be promoted to 64.

For expressions involving pointer types, null may be promoted to any nullable pointer
type, and a non-nullable pointer type may be promoted to a nullable pointer type with the
same secondary type. Any pointer type may be promoted to a void pointer.

A mutable type may be promoted to a constant type which is otherwise equivalent to the
mutable type, or any other type which that constant type may promote to.

A pointer type may be promoted to another pointer type if the secondary type of the pointer
may be promoted to the secondary type of the second pointer.

An array type may promote to an array type with undefined size with an equivalent member
type.

A non-aliased type A may promote to a type alias B if type A may promote to the underlying
type of type B.

6.8 Translation compatible expression subset

6.8.1

The translation-compatible expression subset is a subset of expression types which the
implementation must be able to evaluate during the translation phase.

The following expression types are included:

58

6.8.2

6.8.3

6.8.4

6.8.5

6.9

6.9.1

6.9.2

* logical-or-expression ¢ additive-expression

* logical-xor-expression » multiplicative-expression
* logical-and-expression * cast-expression

* equality-expression * unary-expression

* comparison-expression * field-access-expression

¢ inclusive-or-expression ¢ indexing-expression

* exclusive-or-expression * measurement-expression
* and-expression * nested-expression

* shift-expression * plain-expression

All terminals which are descendants of any of the listed terminals are included, and all
non-terminals and terminals which are descendants of plain-expression are included.

The pointer dereference unary-expression (the * operator) shall be excluded from the
translation-compatible expression subset. Additionally, the implicit pointer type derefer-
ence semantics of field-access-expression and indexing-expression are not available.

The implementation is not required to use a conformant implementation of the storage
semantics of types in the translation environment, provided that there are not observable
side-effects in the execution environment as a result of any differences.

In a context where an expression is constrained to this subset, the use of an expression type
outside of this set shall cause the translation environment to print a diagnostic message and
abort.

Result type reduction algorithm

The result type reduction algorithm shall operate on a list of types. It shall perform the
following reductions in order:

. Replace all tagged unions with their members

Remove all duplicate types

Remove all pointer types such that an equivalent nullable pointer type exists
Remove all mutable types such that an equivalent constant type exists

. If null and exactly one pointer type remain, replace both with an equivalent nullable pointer
type

If null and at least one other type remain after these reductions, the translation phase shall
print a diagnostic message and abort.

59

6.9.3

6.10

6.10.1

6.10.2

6.10.3

6.10.4

6.10.5

6.10.6

6.10.7

If exactly one type remains, it shall be the result of the result type reduction algorithm.
If more than one type remains, the result of the result type reduction algorithm shall be a
tagged union containing the remaining types.

Flexible constant promotion algorithm

The flexible constant promotion algorithm shall operate on two types, at least one of which
shall be a flexible constant type.

If both operands are iconst, they shall both be lowered to iconst with the minimum value
set to the smaller of their minimum values and the maximum value set to the larger of their
maximum values, and that type shall be the result.

Otherwise, if both operands are fconst or both are rconst, they shall both be lowered to a
new fconst or rconst respectively, and that type shall be the result. If both operands are
flexible constant types with different storages, the promotion shall fail.

If one operand is a tagged union type and promotion between exactly one of its members
and the flexible constant type succeeds, the side effects of that promotion shall occur and
that member shall be the result of the promotion. Otherwise, if the constant’s default type
is a member of the tagged union, the constant shall be lowered to its default type and the
promotion shall succeed. Otherwise, the promotion shall fail.

If one operand is fconst and the other is a floating type, the fconst shall be lowered to the
floating type, which shall be the result of the promotion. Otherwise, the promotion shall
fail.

If one operand is iconst and the other is a signed integer type, the promotion shall succeed
if both the minimum and maximum values fields of the iconst are within the limits of
the other type. If one operand is iconst and the other is an unsigned integer type, the
promotion shall succeed if the maximum value of the iconst is within the limits of the other
type. If the promotion succeeds, the iconst shall be lowered to the other type, which shall
be the result of the promotion.

If one operand is rconst and the other is rune, the rconst shall be lowered into a rune. If
one operand is rconst and the other is an integer type, the promotion shall succeed if the
rconst value can be represented as the specified integer type without any data loss.

60

6.11 Declarations

declarations:

export,, declaration ;
export,, declaration ; declarations

declaration:

global-declaration
constant-declaration
type-declaration
function-declaration

A declaration specifies the interpretation and attributes of a set of identifiers.

6.11.1 The identifiers shall be visible anywhere within the current translation unit. If the export
keyword is used, the identifiers shall be part of the unit’s exported interface.

6.11.2 The export keyword shall not be used with a function-declaration which uses the @init,
@fini, or @test attributes.

6.11.3 Global declarations

6.11.3.1

6.11.3.2

6.11.3.3

global-declaration:
let global-bindings
const global-bindings

global-bindings:
global-binding , ,p;
global-bindings ., global-binding

global-binding:

decl-attrop; identifier : type

decl-attr,,, identifier : type = expression
decl-attr:

@symbol (string-constant)

In a global-declaration, sufficient space shall be reserved for each identifier in the
global-bindings to store the type associated with it. That storage shall be initialized
to the value of the expression and shall have alignment greater than or equal to
the necessary alignment for the type. In the const form, the types shall have the
constant flag enabled by default.

A global-binding’s expression shall be limited to the «b8: Translation compatible
expression subset», and shall be evaluated in the translation environment. The type
of the value of the expression shall assignable to type.

The first form of global-binding is a prototype. In this form, the implementation
shall not allocate storage for the global, and the programmer must arrange for

61

storage to be provided elsewhere, e.g. during linking.

6.11.3.4 The interpretation of the @symbol form of decl-attr is implementation-defined.

6.11.4 Constant declarations

constant-declaration:
def constant-bindings

constant-bindings:
constant-binding , op
constant-bindings , constant-binding

constant-binding:
identifier : type = expression

6.11.4.1 In a constant-declaration, the identifiers in the constant-binding shall be available
to the translation environment. No storage shall be allocated for them in the
execution environment, and they shall not be addressable. References to them shall
be equivalent to references to the expression associated with them, with a cast to
type inserted.

6.11.4.2 A constant-binding’s expression shall be limited to the «68: Translation compatible
expression subset», and shall be evaluated in the translation environment. The type
of the value of the expression shall assignable to type.

62

6.11.5 Type declarations

6.11.5.1

6.11.5.2

6.11.5.3

6.11.5.4

6.11.5.5

type-declaration:
type type-bindings

type-bindings:
type-binding , op
type-binding , type-bindings

type-binding:
identifier = type
identifier = enum-type
enum-type:
enum { enum-values }
enum enum-storage,, { enum-values '}

enum-values:
enum-value , o
enum-value , enum-values

enum-value:
name
name = expression

enum-storage:
integer-type
rune

In a type-declaration, the identifiers shall declare type aliases. In the first form
of type-binding, the underlying type for the identifier shall be the type. In the
second form, the underlying type shall be enum-storage, if specified. Otherwise,
the underlying type shall be int.

In the second form of type-binding, the enum values qualified with the binding’s
identifier shall be made available to the translation environment. No storage shall be
allocated for them in the execution environment, and they shall not be addressable.

If the enum-value does not specify a expression, the value assigned to that name is
equal to the last value assigned to an enum-value of this enum type plus one. If no
such previous value exists, zero is assigned.

An implicitly assigned enum-value shall not exceed the precision of the underlying
integer type; if it were to, a diagnostic message shall be shown instead per «B3:
Diagnostics».

expression, if specified, shall be evaluated in the translation environment and the
resulting value shall be assigned to the corresponding enum-value. The expression
shall be provided the enum’s type’s underlying integer type as a type hint. The result
type must be assignable to the enum type’s underlying integer type (ref «b648:
Assignment»).

63

6.11.5.6

6.11.5.7

6.11.5.8

A temporary scope shall be allocated while declaring an enum type, and each value
name, in order, shall be made available to that scope.

This allows the expression for each value to refer to previously declared values.

Each enum-value’s name shall be unique within the set of all names of enum-values
of the enum-type. Otherwise, a diagnostic message shall be printed and the
translation phase shall be aborted.

expression shall be limited to the «AR: Translation compatible expression subset».

6.11.6 Function declarations

6.11.6.1

6.11.6.2

6.11.6.3

6.11.6.4

6.11.6.5

function-declaration:
fndec-attrs,p; fn identifier prototype
fndec-attrs,p; fn name prototype = expression

fndec-attrs:
fndec-attr
fndec-attr fndec-attrs

fndec-attr:
@fini
@init
@test
futype-attr
decl-attr

The first form of function-declaration is a prototype, and shall cause the identifier
to'refer to the function type described by the prototype and the function attributes.
The implementation of this function shall be provided separately, or the translation
phase shall fail.

The second form of function-declaration shall declare a function and its implemen-
tation. The result type of the expression shall be assignable to the prototype’s result
type. The function shall be available in the unit scope by its name, and available
to other units by forming a fully-qualified identifier from the unit namespace and
the name.

In the second form of function-declaration, each parameter in the prototype which
uses the name form shall be available within the expression by its name. Those
which use the _ form shall not be made available.

The @fini form of fndec-attr shall cause the function to be a finalization function.
@init shall cause it to be an initialization function. If multiple fndec-attrs of the
same type are specified, the last one shall override all previous ones.

References: «??: Initialization functions», «??: Finalization functions»

Functions declared with @test, @init, or @fini shall accept no parameters,
shall return void, shall not be declared with @noreturn, shall not appear in

64

object-selectors, need not have unique names, and shall not be inserted into the
unit’s scope.

6.11.6.6 Other semantics of @test functions are implementation-defined.

6.12

6.12.1

6.12.2

6.12.3

6.12.4

6.12.5

Units

sub-unit:
imports,,: declarations

imports:
use-statement
use-statement imports

use-statement:
use import-alias,, identifier ;
use import-alias,y; identifier :: { member-list '} ;
use identifier :: * ;

import-alias:
name =

member-list:
member o

member , member-list
member:

name

name = name

A unit, or translation unit, is composed of several source files as described by «B3:
Translation steps». Each source file is a sub-unit. A specific sub-unit may have no
declarations, but the unit shall contain at least one declaration among its sub-units.

An import shall declare a dependency between this translation unit and another module of
the namespace specified by the use-statement identifier. This shall cause the named module
to be linked into the final program image as described by «B3: Translation steps».

The first form of the use-statement shall cause the identifiers exported by the target module
to become visible to this sub-unit in their fully-qualified form. Additionally, if the imported
module has more than one namespace, identifiers of the form "x::y" shall be made available,
where x is the most-specific namespace, and y is each of the exported members of the target
module.

The second form of the use-statement shall cause only the members listed in the member-list,
qualified in the context of the target namespace to become visible in their un-qualified form
to this sub-unit.

A member in the first form shall become visible with the name given by its definition in the

65

6.12.6

6.12.7

6.12.8

target namespace. A member in the second form shall become visible with the name given
by the first name in this form.

In the use statement use bar::baz::{bat}, identifier bar: :baz: :bat may be referred to
by its unqualified name bat in the scope of this sub-unit.

The third form of the use-statement shall cause all identifiers qualified in the context of the
target namespace to become visible in their un-qualified form to this sub-unit.

The forms with import-alias shall be equivalent to the forms without it except that the
identifiers shall become visible under the namespace described by the name given in this
form.

In the use statement use foo = bar::baz;, identifiers in the namespace bar: :baz will be
visible under the namespace foo. Forexample, if the fully-qualified identifier bar : :baz: :bat
exists, this sub-unit may refer to it as foo: :bat.

The translation unit shall establish a scope into which all unit-local declarations are inserted.
Each sub-unit shall establish another scope as the parent scope of the unit scope, and in this
sub-unit scope, each of the imports used by that sub-unit shall be made available.

In other words, declarations made in a sub-unit are visible to other members of that unit,
but imports in a sub-unit are not visible to other sub-units.

66

	Introduction
	Copyright

	Scope
	Terms and definitions
	Conformance
	Program environment
	Translation environment
	Translation steps
	Execution environment
	The freestanding environment
	The hosted environment
	Program execution

	Diagnostics

	Language
	Notation
	Lexical analysis
	Keywords
	Identifiers
	Types
	Integer types
	Floating point types
	Rune types
	Flexible constant types
	Pointer types
	Other primitive types
	Struct and union types
	Tuple types
	Tagged union types
	Slice and array types
	String types
	Function types
	Type aliases

	Expressions
	Constants
	Floating constants
	Integer constants
	Rune constants
	String constants
	Array literals
	Struct literals
	Plain expressions
	Allocations
	Assertions
	Calls
	Measurements
	Field access
	Indexing
	Slicing
	Appending
	Inserting
	Deleting
	Error propagation
	Postfix expressions
	Variadic expressions
	Builtin expressions
	Unary arithmetic
	Casts and type assertions
	Multiplicative arithmetic
	Additive arithmetic
	Bit shifting arithmetic
	Bitwise arithmetic
	Logical comparisons
	Logical arithmetic
	If expressions
	For loops
	Switch expressions
	Match expressions
	Assignment
	Variable binding
	Deferred expressions
	Compound expressions
	Control expressions
	High-level expression class

	Type promotion
	Translation compatible expression subset
	Result type reduction algorithm
	Flexible constant promotion algorithm
	Declarations
	Global declarations
	Constant declarations
	Type declarations
	Function declarations

	Units

